US008370732B2

a2 United States Patent 10) Patent No.: US 8,370,732 B2
Black et al. 45) Date of Patent: Feb. 5, 2013
(54) PEER-TO-PORTAL MEDIA BROADCASTING (56) References Cited
(75) Inventors: Tyler James Black, Victoria (CA); U.S. PATENT DOCUMENTS
Dylan John Hansen, Victoria (CA); 7,085.994 B2* 8/2006 GVily wooooooooriooerie 715/234
Leonard Harley, Victoria (CA); Ronald 7,356,600 B2* 4/2008 Offermann ... 709/229
Loren Kirkby, San Diego, CA (US); 7,512,651 B2* 3/2009 Offermann 709/203
: : g B . 7,668,963 B1* 2/2010 Mineretal. 709/231
ge;’én j“snn i}[agboosm’ .\t]lllCt\Oflet‘ (CA); 7.865494 B2* 12011 Bestetal. 707/707
0lby James v agee SImith, victoria 7,930,631 B2* 4/2011 Sahotaetal. 715/239
(CA); Ronald William Stevens, 8,073,903 B2* 12/2011 Wood etal. 709/203
Vancouver (CA); James Ormond 2001/0056460 A1* 12/2001 Sahotaetal. 709/201
Loucks, Victoria (CA), Seamus 2003/0041109 Al* 2/2003 Meloni et al. 709/205
:) g . 2005/0007965 Al* 1/2005 Hagen etal. 370/260
Gcrz:g."]‘;y D a‘%sho ICOI(‘;“”’ Vl\ffona. 2005/0138560 Al* 6/2005 Lecetal. 715/719
(CA); Brian Charles Oraas, Victoria 2006/0156219 Al* 7/2006 Haotetal. .. 715/500.1
(CA); Bryn Adam Aspestrand, White 2007/0203911 A1* 8/2007 Chitl .ocooovvvveereeernn. 707/10
Rock (CA)
OTHER PUBLICATIONS
(73) Assignee: Mixpo Portfolio Broadcasting, Inc., Nejdi et al., Super-Peer-Based Routing and Clustering Strategies for
Seattle, WA (US) RDF-Based Peer-TO-Peer Networks, 2003, ACM, pp. 536-543.*
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 1256 days. Primary Examiner — Doug Hutton, Jr.
Assistant Examiner — Soumya Dasgupta
(21) Appl. No.: 11/712,643 (74) Attorney, Agent, or Firm — Soquel Group LL.C
(22) Filed: Feb. 28, 2007 57 ABSTRACT
(65) Prior Publication Data A system for pef:r-to-portal broadcasting, 1n91ud1ng a portal
web server serving a portal web page that includes source
US 2008/0098301 Al Apr. 24, 2008 code received from and generated by a broadcast server, to a
web browser, in response to a request received from the web
browser, a broadcast server, including a source code genera-
Related U.S. Application Data tor for generating the source code that is included in the portal
. L L web page, in response to a request received from the portal
(63) Continuation-in-part of application No. 11/584,405, web server, a web client computer for requesting the portal
filed on Oct. 20, 2006, now Pat. No. 7,827,298. web page from the portal web server and for executing the
source code included in the portal web page, and a publisher
(51) Int. Cl. computer that enables a publisher to broadcast media files
GO6F 17/00 (2006.01) from the publisher computer to the web client computer via
(52) US.Cl .o 715/205; 715/201 the broadcast server, in response to the web client computer
(58) Field of Classification Search 715/205, executing the source code included in the portal web page.

715/201
See application file for complete search history.

PORTAL WEB PAGE WITH
IFRAME SOURCE CODE

PORTAL INFORMATION

14 Claims, 14 Drawing Sheets

US 8,370,732 B2

Sheet 1 of 14

Feb. 5, 2013

U.S. Patent

T 'OId

AR

\m H31NdN0D JNOH uA
8Z1

\mmmkq.—n_ w.-m(._.mOmUA
aci

\h INOHd I ISON T
vzl :

\d NOISIAZTAL T
prd)

T T

R RS

WILSAS ONLLSVYOavOut
g3aM-01-¥33d

l d31NdNOD SNOH f
8t

A|hw0_>mn_ mmw._mm_;w/
9t

i VYIWVI O3AIA u/
141"

i ANOHd 390N u/
cLl

[004

US 8,370,732 B2

Sheet 2 of 14

Feb. 5, 2013

U.S. Patent

¢ Ol

00T
) OXidINoay woddng Ajod Aseapd ADIIOG WBIOT) SUDJIPOY PUR St}
e (HOJS803 04, L0 0BG - 0Q) SIShyY BUB SOjOU
mmgmgem 8014 10} SCODIA UM JNCA 1SBORE0IG
4 -
505 G55 geg 60
%,M omua &E T80 § paus sapis s %ws
G
- GEg T] -
Eﬁ o o 03 | s 03pi mmﬁa mmmx ﬁé 035 ~ + 08T
; s AL 8084 HEIS
. SERF - 0T
‘. SO8MA Y8agi~- 31 T
{sbel) spuueys |
o5 By wios soapiA dog oy | SSY BSOeN alid] X
) WNFTLZO s08pipjseg | uny Apesy Duipeo?
7| | eseapee R S s W ol 1By as oepia uno ok seopeosy OB EED
LIOD Q7 L ogD mmm S /I8Ny M 55200y
Wiad AJCISH4 YTI0RS SBIUOADZ D 2WIOH WSaay dOIg DiDMICYH oDR
¥ © b o =RV &l SR E=EE
O1afd $j00f saYUoADy mMaIA ypg B
pad i BERoIg ae

U.S. Patent Feb. 5, 2013 Sheet 3 of 14 US 8,370,732 B2

-
Lo
oesd
Lond
{‘."\
H
,I
'3
!
4
i
r
;
/
g
4
E
7

FIG. 3

U.S. Patent Feb. 5, 2013 Sheet 4 of 14 US 8,370,732 B2

4 Multiple sources assembled N

Web Browser
File Edit View Fgvorites Tool

< T 0

Back Forward Siop Refresh
e
0
_Personal Portal
i.ocai Server Network

f @\ L w»« 3D

1 2 ﬁ}b Mulliple PIXPQ
Broadcasters

‘“@E—? jotmn WQD Dasktops
HOPRI® george '
SPRIND ringo @:: Devices

<~ J

PIXPO Server)
[Ul defn & experience

Premium conlent
Hosted content

N’

7

RESTiul AP Py =2)

£ MIXPO broadcaster

{ocalhost:
jocathost. pixpo.com T

Q&‘ QF’ @&E Bcasier Pmﬁi-e} TutﬁggaArea

Aaled
PIXPO client engine)
/

N

Fooy

X | X)

N

M
i

Installed PIXPO Client Broadcaster's local
_ view / app .

FIG. 4

U.S. Patent Feb. 5, 2013 Sheet 5 of 14 US 8,370,732 B2

g’,}; mixpo [Quick Search 1 Allmixpo [T} Walcome, grahanO0 Sign ot jHelp
{ Home | Channel Guide | Broadoasters TMy Channels | My Account] My Profle] My Favorites |
«8ixpo Hps and fulorial SO0
1, Sefect a template fo finstructions here]
g;ah,u your conjent Screan Shot Screen Shot
ik here 7y Next >
) & —
v H o H - :]
%:]F}'i@,aham Stark Profiis] | Edit Channel Revert gggﬁ?ﬁ S
y Fies - —
- Libfﬁf}({-{ 3 2} New Chamnele—-310
Channels —i Channel Actions » () > Play Charmial } {2 1(%] Speedv Views v [
Choose Folders or Fiiss ‘E
gg}igar? HEaider Files | £7 @&- | Address | C'Docyments and Seling'dlf Usersiiiy Documents 1)
o Deskiop ; —
S My Socuments
L et P L 8
73 Wy Google Ga £y
el |y 7
v 2} T)
T i;}%;cture other , TS C g
1 My Bhapes e =
73y Videos @ ST /%3§ by N o
@ & My Compler q‘%&;\ﬁ }) ;;A | ;\’%‘s\{\;\ @i\ {;:Js:@x
B My Netork Plarel] IR sy v ﬁg&;‘: et
€2 Recycle B Y N S —
TISC.i PG miee Jpg TISCIRg misc.ipg iS00G
7| (2] |44 | |
i SErd ¥ G ‘
mist.ing IMHSC.i0G TISC.ing THSE.pg
ffxr:%ﬁ?\ sy
LY
THSE.J0G MISC.Rg WisC.ing
} { Cancel } { Add Al } {Add Selected)
2.
f/g Learn more

520 SUNDANCE] |

Last revision; 400408 2:30 PY N o [T i
Cevaled: 1000106 1005 PM Rever] Proview)\p eraml Save)

FIG. 5

US 8,370,732 B2

Sheet 6 of 14

Feb. 5, 2013

U.S. Patent

HIHsNand

SUIAN3S QUVOTHOLIMS -Z W3l

SHIAUIS AXOU ISUIAIY -1 Y3

W3LSAS
INIWIOVNYW
JASVOYLIvYQ

049

YIAYIS €IM

08

U.S. Patent

Feb. 5, 2013

Sheet 7 of 14

US 8,370,732 B2

Iﬂ—— WEB CLIENT ——Plﬂi CACHING WEB PROXY "—-Pl"—' PUBLISHER _—DI

RECEIVE REQUEST AND ESTABLISH TCP/IP
REQUEST PUBLISHERURL |— | CHECK CACHE FOR CONNECTION TO CACHING
REQUESTED ITEM WEB PROXY
715 [J7 705
LOGIN AND REGISTER AN
ITEM FOLND IN ENDPOINT WITH CACHING
' WEB PROXY
710
RECEIVE REQUESTED DELIVER ITEM TO WEB
DATA [<—| CLIENT FROM CACHE
735
730
IS PUBLISHER
CONNECTED?
RECEIVE *NOT FOUND" RETURN A *NOT FOUND®
ERROR <—ERROR
/‘
750
746
PROXY REQUEST TO [|RECEIVE REQUEST FROM
PUBLISHER CACHING PROXY SERVER
-
I 760
755
STREAM RESPONSE BACK
WRITE RESPONSETO [y 170 CACHING PROXY
SERVER ~
/ 765
770
RECEIVE REQUESTED SEND RESPONSE BACK TO
DATA WEB CLIENT
780
75

FIG. 7

US 8,370,732 B2

Sheet 8 of 14

Feb. 5, 2013

U.S. Patent

8 "DId

J
%8 anona oM
¢~ | ¥3DVNVI 3SVavLYQ ¥OSSI00Nd Jovil |
ov8 028
0ee o8
\] INIONI MHOMIIN YIAOOSNVML O3aIA |/
¥aHsiand |
008

V6 DI

US 8,370,732 B2

Sheet 9 of 14

Feb. 5, 2013

U.S. Patent

\BU B 58 1 Hwﬁw wﬂm B

TROUBSE U WBIS [e

“ggous 8 4 Bl [R
Aol o ubig BRAOZN

= éﬁi SOWEL) ODIA PUB St JOLOH MOH 110813 SIOWICY BY |

SRRV TaNOHOLIML

ISSETY 459 |,

ounpe; oapy oo

fyaieag| | “apnp ALU] LDieag]

RV -

AN

"~

3 .,
%
e

T
e ospn 6By s oapi 08D |

\\\\\\\ %
AL YR L U0 Lz
Bugseopmolg b Hae.od LY L TEES ‘
sie0) 158 ButArfd MON
T ey | eig ESE2N

Y

_
ﬂ {
fm.\vm
& -
WO CE L 0q0 mem / /1Oy | ssaippy

g AJOISIH YDJ0BS SBYOADY (IOW SWOH yseusy dOIg pJOMICH 30og

T e v o 08B O B & < o>

dipf] sj00] s8yU0AB4 maA 1pT A

] IBSMOIT OOM

Sheet 10 of 14 US 8,370,732 B2

U.S. Patent Feb. 5, 2013
1
a\@
S Fast Cars
-
Fast Cars add video file
T AL N L. s\) N = N Y
Y) 2057 o=
cgp_videc_c:a@ui cgpﬁvideg_‘hewer cgpwv%ﬁeowday%a cgp__viz}eewmargre egp_video_tour
R ‘,% .‘\M\\ ;’
i ~_ |/
NN
ogp_video techno
?},“

FIG. 9B

Fast Cars

My Broadcast: Fast Cars

Add Video File !
C.Documents and Selti}| Browse.. |

Tifle:
icgp_video_lour 5
Description;
L
= Preview
| Add To Channel

7

5

FIG. 9C

U.S. Patent Feb. 5, 2013 Sheet 11 of 14 US 8,370,732 B2

Fast Cars

My Broadcast: Fast Cars

Add Video File
CDocuments and Sethill Browse..., |

Tille:
kgp_video_tour |
Deascription:
L
— Preview
N
& cgp_video_four.enwmy L X

File View Play

1
QSE‘T‘\» () ——=

L——

g
L

) -)
cgp_video_tourenwmv

@ Dm:a:;:: {m 45 { 05:15
FIG. 9D

16 "OI4

US 8,370,732 B2

Sheet 12 of 14

Feb. 5, 2013

- IR o
SNBSS | "5 GES 469 S
— YAWORDI peuroBpIA snoyoepis 4o
R — S5 | @ <o & &8 80 T e
oo oectes e oo teecen \ I ” ; u\\i% ;.i.ﬁchw\.ﬁu.u....fxam.«.\‘w..n.”;e,
R /o ; S5 Pt VRIS , ;
N\,\ %gamwm iU ompi mnﬁn il e SHGSEE) YRS
—— “. Ty ot N S e 4
e e ————— RN B L 4 b S - - y
T £ MW aw\\ N i R A (285 | | apnp Al | woseeg]
b M\w
&)
..... 4 _
e B SIBT) 1884
M X =
pLyomivo f L WO K (= &
Bunseapeosg e =
TEB55E8IE A s180) 1984 BuhBjd MON
o
L noay | g | [Ts58e | sewdpy | Suocpe] | emmnpudipel | euilioel | SOiSse) el ¢

&3
%
S
A

/,AM\\JV \ ST

U.S. Patent

US 8,370,732 B2

Sheet 13 of 14

Feb. 5, 2013

U.S. Patent

0T 'Ol

ViVG-VLiIN VIa3N

NOLLYONddY
18voavoua

~ __ NOLLVIROSNI TV.ANOd
0504
[IN3INOD VIdan
HYILNANOD ¥I3d ¥IHSIEN
020}
v L
HOLVHINIO 3009
FOUNOS FWVI
3Isveviva T ogo1
3Q0D 304N0S IARVAAI
HIAMIS 1SVOavoud Y3AUIS 93M TVLINOd
N~ ocoh osor—"
ovol
Y3ISMONE E3M
< -
AIN3LNOD VIOaN 0.0} 300D I2UNOS IWVHHI
AN3WNOOQ WX HLIM 39Vd §3M TVLIHOd
NOLLVWO-SSNVYL 118X
HILNGNOD YIMIIA

US 8,370,732 B2

Sheet 14 of 14

Feb. 5, 2013

U.S. Patent

0611 —]

VIJ3IW 1SYOOVOHE HOJ SIOVII
TWYNENOHL TTBVHNTD AVIESIQ
GhV 30V 83IM TVLHOS MIONIY

a4 |

39Vd
€93M TYLHOG OLNI THLH QITW3

013 |

ROUVWHOISNVHL LTSX VIA TUH
OLINEINIVINOOT TAX NROASKYVYEL

a

Y3AUIS 1SVI0VOHE KON S

TT 'Ol

sty —] NOUVIRIOJSNVML LTISX IN3DIV[,
y
oz ~
NOLLVPRIO IS X L6 NOLYWHOISNVL
176X G31S3MOTY JAVIINID
5914] ANV ININNS0T TWX BAI303 [e=
g ~
YIAUIS LSVYIOVOHS TNX SY ALYHIANTD ‘SSvEVLVO
csri—] WO ININNOOD WX 1§3ND3H WOu4 V10 031SINOT IA3RLTY
el onE~
¥IAUIS TVINOG OL
UISMOYSE ONIMIIA OL SSVd ONY UIAMIS 15VOOVONS
SHVH4I NI 2000 31N93X3 SSYJ ONY 39Vd 834 TLHOS ¥Od
U F9Y4 QIAVIISIO NI SWva41 038N T O ey T IO oLvivavian viaawenash_, .,
\ octt [-x4%% J
¥3AN3S TVI40d ¥IAYIS 1SYDAVOLE WM TINOd
o814 —] HOY4 36vd A3M WLNOd 163N0IN 3002 32UNOS SHVH3I 13003y FSVEVIVO NI V1VG VAW 340.S 01.15voavo¥a Yo voTR SIS K o
7433 ~N
¥RNROS uIHSTIENG || WINOA 8IM
KOS VIVO-V1IW JAIBDIN NN ASYIOVOUD AN RO XD

[~ soit

Tl YISMOUE ¥IMIIA ll'*lli YIAHIS TVLNOd |'—‘l HIAHIS LSYIIVOLT .|+|. BILNSROD ¥IHSENS I'_

US 8,370,732 B2

1
PEER-TO-PORTAL MEDIA BROADCASTING

CROSS REFERENCES TO RELATED
APPLICATIONS

The present application is a continuation-in-part of assign-
ee’s pending application U.S. Ser. No. 11/584,405, now U.S.
Pat. No. 7,827,298, filed on Oct. 20, 2006, entitled “Peer-to-
Web Broadcasting”, which is hereby incorporated by refer-
ence in its entirety.

FIELD OF THE INVENTION

The subject invention relates to multimedia broadcasting
over the Internet.

BACKGROUND OF THE INVENTION

Traditionally, two architectures have been introduced to
enable publishing or broadcasting video content, referred to
as “video clips”, over the worldwide web; namely, a server-
based architecture and a peer-to-peer architecture.

The server-based architecture requires that a creator of a
video clip, referred to as a “content owner”, upload his video
clip to an Internet server. The Internet server maintains a
directory of content and allows users to view the content and
download or stream the content. The disadvantages of this
approach are: (1) it is time-consuming to upload large video
files; and (2) the content owner must maintain his content on
his own computer system and also on the Internet server,
which is cumbersome. To speed up the upload process, the
content owner generally reduces the size and quality of the
video clips that are broadcast. Video normally seen in full-
screen size when played locally from the owner’s hard drive,
becomes confined to small windows, one-fifth the size of the
original, when streamed from a remote server over the Inter-
net.

The peer-to-peer (P2P) computing architecture, which
relies less upon dedicated servers, provides an alternative
approach. Peer-to-peer computing involves sharing of com-
puter resources and services through direct communication
between peer computer systems. Conventional P2P comput-
ing enables peer computers to exchange files and to commu-
nicate directly between one another. As such, a peer computer
may act as a client device or a server device, depending on the
computing process and the needs of the network of peer
computers.

The peer-to-peer architecture was initially introduced to
enable interactive, person-to-person communication on the
Internet. Early Internet Relay Chat (IRC) systems enabled
people all over the world to participate in real-time text-based
conversations. Using an IRC client, a user can exchange text
messages interactively with other users. When logged into a
chat session, a user “converses” by typing messages that are
instantly sent to other chat participants. In recent years,
instant messaging (IM) systems, such as AOL’s Instant Mes-
senger, Microsoft’s MSN Instant Messenger and Yahoo!’s
Pager have added the capability to transmit files, including
video, sound and image rich media files, between peer com-
puters. However, transmitting rich media files using IRC or
IM systems has the disadvantage that the entire media file
must be transmitted, which is cumbersome for the content
owner, and the disadvantage that the content owner loses
control over his media.

Some recent popular forms of P2P computing include the
file-sharing services provided by Napster, Gnutella, Freenet
and Groove. These file-sharing services allow peer computers

20

25

30

35

40

45

50

55

60

65

2

to identify and share data files with other peer computers over
the Internet. Napster, for example, utilizes a centralized direc-
tory service that is provided on one or more dedicated server
computers connected to the Internet. To search for and dis-
cover a file, such as an MP3 song, to download from another
peer computer, a Napster client queries the dedicated server
computers and central directory therein, which responds with
alist of other Napster configured peer computers that have the
requested file. The requesting Napster client then connects
directly with one of the identified other peer computers, to
access and download the requested file. The other peer com-
puter acts as a server to support the downloading process. A
disadvantage of this approach is that the Napster server may
not have up-to-date information about the Napster clients,
and thus some content may be unavailable or out-of-date.
Another disadvantage is that the central directory may indi-
cate that certain content is available from a peer, but that peer
may not be online and so a requesting peer would not be able
to make a connection.

Unlike Napster, Gnutella does not rely on a centralized
directory service, and thus does not require dedicated server
devices. Instead, files are discovered by having peer comput-
ers directly communicate, and pass queries from peer com-
puters to other neighboring peer computers. Upon receiving a
query, a Gnutella peer computer may, for example, decide to
do nothing, respond back to the requesting peer computer,
such as by notifying the requester that the requested file has
been found, or forward the query on to one or more other peer
computers, thus widening the search for a given file. If the
requested file is available for access and downloading from at
least one of the other peer computers, then the requesting
Gnutella peer computer, acting as a client device, connects to
that peer computer and begins accessing and downloading the
requested file. Here, again, the other peer computer acts as a
server during the accessing or downloading process.

A general disadvantage of peer-to-peer file sharing is thatif
a client receives several requests simultaneously, then these
requests compete for the relatively limited resources of band-
width and disk access. Therefore, either the system degrades
with each additional simultaneous requester, or the receiving
client must refuse service to additional requestors. By con-
trast, with server-based approaches the provider of the service
can add additional servers and load balance among them, and
they can store multiple copies and cache often-requested
media.

Disadvantageously, most P2P file-sharing services require
a user to download an entire file. Although the downloading
of a file gives a user certain advantages, the transfer of the file
and subsequent viewing and/or listening can be undesirable
from the perspective of a content owner. The relative ease
with which a copy of a file can be obtained can lead to
copyright violation. Further, the transfer of files can be in
non-real time, which permits a user to transfer a substantial
quantity of data from other users in a short period of time.
This can undesirably occupy a large amount of network band-
width for both the user who is copying the files and the users
who are providing the files.

Music and video streaming was introduced to eliminate the
disadvantages associated with downloading or uploading rich
media files. Streaming enables a user to view a video clip as
it is being received on their computer, without having to wait
for the video file to be received in its entirety before playback
can begin, and without saving a copy of the video file.

Thus, it would be of advantage to have a service that
streams music and video, does not require that a content
owner upload his media files to a server, provides up-to-date
information about available media clips, caches often-re-

US 8,370,732 B2

3

quested media files on a server computer, and does not require
special media playing software to view streamed videos,
music and images.

SUMMARY OF THE DESCRIPTION

The subject invention concerns a third architecture for
video broadcasting; namely, a peer-to-web broadcasting
architecture. Using the subject invention, a user of a client
peer computer can broadcast his media from his computer
over the web. The user’s media can be viewed within conven-
tional web browsers that use conventional media players,
such as a Windows Media Player or a Macromedia Flash
player control. Such media players are generally available on
most platforms and web browsers. As such, the subject inven-
tion does not require additional viewing software. The broad-
caster, also referred to as a publisher, can organize his media
into multiple broadcast channels, which viewers can then
select from for viewing.

The subject invention overcomes drawbacks of conven-
tional video broadcasting technology that uses a central
server. Using the subject invention, an owner of video clips
has complete control over the broadcast of his clips, and the
people who have viewing privileges. No upload to a central
hosting server is required. No coordination of instructions
with a hosting server is required. No time is wasted uploading
videos to a central server. The subject invention does not copy
source files or upload source files to a central server. Media is
prepared on a local client computer for web delivery, and
original video clips are protected against copyright piracy.

The subject invention is particularly advantageous for
independent filmmakers, artists and musicians, who can use
peer-to-web broadcasting to show their media to potential
employers, licensees and other such business leads. Broad-
casters can set their broadcast channels as public, in which
case they can be searched and found by the general public.
Alternatively, broadcasters can set their broadcast channels as
unlisted, in which case they can be viewed by invitation only.

The subject invention is also particularly advantageous for
consumers who wish to share their personal recorded video
clips with friends and family. The invention enables them to
establish private channels.

The subject invention also enables peer-to-portal broad-
casting, where publishers can broadcast their media to a third-
party portal, for viewing by a general portal audience. The
broadcast media appears to the audience as if it is being
sourced from the portal’s web server, whereas in fact it is
being sourced from the publishers’ peer computers.

There is thus provided in accordance with an embodiment
of the subject invention a method for peer-to-portal broad-
casting, including providing a web page for a portal, the web
page including an inline frame (iFrame), receiving meta-data
for media files selected by a user for broadcast to the portal,
and dynamically generating source code for the iFrame upon
request, the source code including instructions for a web
browser (i) to request an XML document that includes meta-
data for user-selected media files, (ii) to transform the XML
document to an HTML document using an XSLT transfor-
mation, and (iii) to insert the resulting HTML document into
the web page for the portal.

There is further provided in accordance with an embodi-
ment of the subject invention a system a system for peer-to-
portal broadcasting, including a portal web server for a web
portal, the portal web server storing a web page for a portal,
the portal web page including an inline frame (iFrame) with a
source originating at a broadcast server, a publisher computer,
communicatively coupled with the portal web server, includ-

10

20

25

30

40

45

50

55

60

65

4

ing a broadcast tool that enables a publisher to broadcast
media files from the publisher computer to the web portal, a
broadcast server, communicatively coupled with the portal
web server and with the publisher computer, including an
iFrame source generator for generating source code for the
iFrame included in the portal web page, the source code
instructing a web browser to transform at least one XML
data-container document for broadcast media files, into at
least one HTML page that assembles a plurality of web
objects, and an XML document generator for generating
XML data-container documents for broadcast media files,
and a web client computer, communicatively coupled with
the portal web server, including a web browser including a
dynamic web page generator and assembler, for executing the
iFrame source code generated by the broadcast server.

There is yet further provided in accordance with an
embodiment of the subject invention a computer-readable
storage medium storing program code for causing a comput-
ing device to provide a web page for a portal, the web page
including an inline frame (iFrame), to receive meta-data for
media files selected by a user for broadcast to the portal, and
to dynamically generate source code for the iFrame upon
request, the source code including function calls (i) to request
an XML document that includes meta-data for user-selected
media files, (ii) to transform the XML document to an HTML
document using an XSLT transformation, and (iii) to insert
the resulting HTML document into the web page for the
portal.

There is moreover provided in accordance with an embodi-
ment of the subject invention a broadcaster for publishing
media content, including a video transcoder for transcoding
video content from a source format to a target format at at
least one target bit-rate, an image processor, communica-
tively coupled with the video transcoder, for generating at
least one thumbnail image representation of the video con-
tent, a database manager, for managing a table of broadcast
channels, a table of media files within channels, and a table of
cached media files, a command sequencer, communicatively
coupled with the video transcoder, the image processor and
the database manager, for queuing and sequencing com-
mands issued to the video transcoder, the image processor and
the database manager, and a network engine for sending the
video content to a proxy server, for streamed delivery to at
least one web client on-demand.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject invention will be more fully understood and
appreciated from the following detailed description, taken in
conjunction with the drawings in which:

FIG. 1is a simplified block diagram of a peer-to-broadcast
system, in accordance with an embodiment of the subject
invention;

FIG. 2 shows a sample web page for viewing media on a
web client computer, the media being broadcast from a peer
computer in accordance with an embodiment of the subject
invention;

FIG. 3 shows a sample video viewing area overlaid on a
sample web page, in accordance with an embodiment of the
subject invention;

FIG. 4 is an illustration of a web page assembled from
multiple sources, in accordance with an embodiment of the
subject invention;

FIG. 5 shows a sample web page for publishing mediaona
peer computer, for web broadcast, in accordance with an
embodiment of the subject invention;

US 8,370,732 B2

5

FIG. 6 is a simplified block diagram of a two-tier commu-
nication system for publishing media within the peer-to-
broadcast system of FIG. 1, in accordance with an embodi-
ment of the subject invention;

FIG. 7 is a simplified flow chart of a sequence of events
within a peer-to-broadcast system, in accordance with an
embodiment of the subject invention;

FIG. 8 is a simplified block diagram of a publisher system,
for publishing media within the peer-to-broadcast system of
FIG. 1, in accordance with an embodiment of the subject
invention;

FIGS.9A-9E shows a sample portal web page including an
embedded portion broadcast from a publisher, in accordance
with an embodiment of the subject invention;

FIG. 10 is a simplified diagram of a peer-to-portal broad-
casting system, in accordance with an embodiment of the
subject invention; and

FIG. 11 is a simplified flowchart of a method for peer-to-
portal broadcasting, in accordance with an embodiment of the
subject invention.

DETAILED DESCRIPTION

The subject invention concerns peer-to-web broadcasting.
Using the subject invention, a publisher can broadcast his
media to the web from his peer computer, without uploading
the media to a central server. As such the publisher retains
complete control over his media assets, and who is able to
view them.

Reference is now made to FIG. 1, which is a simplified
block diagram of a peer-to-broadcast system, in accordance
with an embodiment of the subject invention. Shown in FIG.
1 is a broadcasting system 100 that enables peer computers,
referred to as publishers, to broadcast their media over the
web. The publishers stores their media, and web clients can
view the broadcast media using conventional web browsers,
without requiring additional client software. The broadcast
media can be live video, pre-recorded video, music, pictures,
presentations, slideshows and other forms of media.

Media can be published on a mobile phone 112, a video
camera 114, a wireless device 116, a home computer 118 and
other such computing devices. Published media can be
viewed on a television 122, a mobile phone 124, a portable
player 126, a home computer 128 and other such computing
devices that run a web browser.

The present invention is readily implemented within the
Asynchronous JavaScript and XML (AJAX) architecture,
used for dynamic HTML generation.

Reference is now made to FIG. 2, which shows a sample
web page 200 for viewing media on a web client computer,
the media being broadcast from a peer computer in accor-
dance with an embodiment of the subject invention. As can be
seen in FIG. 2, web page 200 is displayed by a conventional
web browser, such as Microsoft’s Internet Explorer browser.

Shown in the upper left of web page 200 is a list of broad-
cast channels, each channel corresponding to a set of media
related by a common theme that is generally the name of the
channel. Channel 210 is named “Best Videos”, and is cur-
rently the channel being displayed in web page 200. Channel
220 is named “Music” and channel 230 is named “Staff Pics”.
To the right of the list of channels is the set of media for the
currently selected channel. Each piece of media is repre-
sented by a thumbnail, which is a small image that designates
the media. Thus thumbnails 240, 250 and 260 correspond to
videos from the “Best Videos” channel. By clicking on one of
these thumbnails, a user can view the selected video within
his web browser. The thumbnail images and the correspond-

20

25

30

35

40

45

50

55

60

65

6

ing videos are generally stored on a peer computer of the
publisher who created the channels.

Reference is now made to FIG. 3, which shows a sample
video viewing area overlaid on a sample web page 300, in
accordance with an embodiment of the subject invention.
When a user clicks on one of the video icons, such as icons
240, 250 or 260 of FIG. 2, the corresponding video is
streamed to the user and played within a viewing area 310.
Viewing area 310 includes typical video controls 320, for
play/pause, stop, fast forward, fast reverse and volume con-
trol.

Generally, the web page for viewing published media is
assembled from multiple sources, including inter alia:

(1) hosted programmatic and layout elements (graphics,

CSS, JavaScript, HTML);

(ii) hosted content from broadcasting system 100 (FIG. 1);

(iii) local multi-media content (video, image thumbnails);

(iv) local data container elements (XML documents);

(v) multi-media content (video, image thumbnails) from

multiple remote publisher computers; and

(vi) data container elements (XML documents) from mul-

tiple remote publisher computers.
Reference is now made to FIG. 4, which is an illustration of a
web page assembled from multiple sources (i)-(vi), in accor-
dance with an embodiment of the subject invention. Shown at
the top of FIG. 4 is a web page, denoted by A, rendered by a
standard browser. Web page A includes components
assembled from multiple sources.

A first source, denoted by 1, is local broadcast content. A
local host server, denoted by 4, is treated as part of the domain
for system 100 (FIG. 1), by including a DNS entry for “local-
host.pixpo.com” which is mapped to 127.0.0.1, where
“pixpo” is a web server name for system 100. It will be
appreciated by those skilled in the art that effectively this
DNS entry enables an Internet browser to treat the local host
server as part of the domain for system 100. This is significant
since web browser security policies generally require that
dynamic content, such as iFrames and scripts, have a single
domain of origin. The DNS entry thus enables web pages to
be assembled from both local and remote endpoints without
violating security policies enforced by the browser.

It will thus be appreciated by those skilled in the art that the
subject invention bridges multiple domain hosts to a single
domain, and facilitates communication between a local host
and main page data through JavaScript. The subject invention
enables access to information from any IP address via a
sub-domain of an origin server. For example, if an HTML
page is sent from www.mixpo.com, then that HTML page, via
the subject invention’s JavaScript bridge, can access
any *.mixpo.com URL. Thus a DNS entry for “amazon.
mixpo. com” can be mapped so that it resolves to Amazon’s
search API servers. JavaScript on a www.mixpo.com HTML
page can then make remote data requests to Amazon’s servers
directly. Generally, such multiple calls to services from mul-
tiple domains are blocked by a browser’s single origin secu-
rity policy. Using the subject invention, however, a browser
makes multiple connections to multiple services because of
the JavaScript bridge, which maps an external domain, such
as amazon.com, to an internal domain, such as amazon.mix-
po.com. The browser then allows these connections, even
though they connect to external domains.

In distinction, prior art technology, such as Google’s “1G”
pages, assembles multiple components into a page by assem-
bling the page completely on central servers before sending it
to a browser.

A second source, denoted by 2, is content from a broad-
casting system 100. A third source, denoted by 3A, 3B and

US 8,370,732 B2

7

3C, is content from multiple remote broadcasters John,
George and Ringo desktop computers or other computing
devices. The third source also includes data content 3D.

Shown at the bottom right of FIG. 4 is a web page, denoted
by 5, for a broadcaster. Web page 5 also includes components
assembled from multiple sources. A first source, denoted by
6, is local broadcast content. A second source, denoted by 7,
is content from broadcasting system 100.

As shown in FIG. 4, source 1 for local content uses a
Representational State Transfer (REST) application pro-
gramming interface (API), for communicating with web page
A and web page 5. Information about REST is available on
the Internet at http://en.wikipedia.org/wiki/Representa-
tional_ State_Transfer.

Reference is now made to FIG. 5, which shows a sample
web page 500 for publishing media on a peer computer, for
web broadcast, in accordance with an embodiment of the
subject invention. Web page 500 enables a publisher to create
broadcast channels, such as the channels listed in FIG. 2, and
to populate the channels with his media. As shown in FIG. 5,
a publisher has created a new channel 510, temporarily
named “New Channel”, and an explorer-type window 520
enables the publisher to select media files from his file system
to broadcast within the new channel. Channels can be desig-
nated as public, in which case they are made publicly avail-
able, or as unlisted, in which case they are only made avail-
able to friends that the publisher invites to see his media.

In accordance with an embodiment of the subject inven-
tion, information about publishers and their broadcast chan-
nels is stored in a central database, which can be queried by
web clients in order to conduct searches for content.

Reference is now made to FIG. 6, which is a simplified
block diagram of a two-tier communication system for pub-
lishing media within the peer-to-broadcast system of FIG. 1,
in accordance with an embodiment of the subject invention.
As described hereinabove with respect to FIG. 1, the peer-to-
broadcast system enables HTTP web clients 612 and 618 to
view channels of media content broadcast by publishers 622
and 628.

The system shown in FIG. 6 includes two tiers of servers;
namely, a first tier 630 of reverse proxy servers 632, 635 and
638, and a second tier 640 of switchboard servers 642, 645
and 648. Each server has its own local cache, and caches
responses generally in accordance with the HTTP standard,
which enable it to serve many clients while making only a
small number of requests to another server.

When a publisher logs on to a switchboard server, the
switchboard server writes a file to a master Andrew File
System (AFS) directory. The file is named according to the
username of the publisher, and the file contains the switch-
board server’s host name. Reverse proxy servers search the
AFS directory for that file, to determine which switchboard
server to contact for a designated publisher. It will be appre-
ciated by those skilled in the art that the AFS directory is
essentially being used here as a database. Because multiple
switchboard servers are able to write to the same file, coop-
erative locking is used. It will further be appreciated by those
skilled in the art that the subject invention may use an actual
database, instead of a master AFS directory, for this purpose
of maintaining a switchboard directory.

A distinction between the first tier servers and the second
tier servers lies in the request to the next server. Specifically,
the first tier reverse proxy servers extract a username from an
HTTP request, and search the master directory for a file with
that name. The file contains the name of a switchboard server.
The second tier switchboard servers extract a username from
an HTTP request, find a connected publisher with that user-

20

25

30

35

40

45

50

55

60

65

8

name, and forward a request to the connected publisher. If a
switchboard server receives a request for a publisher who is
not connected, the switchboard server returns a 503 HTTP
response code. JavaScript in the web client browser receives
this response and handles it appropriately; e.g., redirecting to
a “user not connected” page.

Each proxy server accepts regular HTTP connections on
port 80, and forwards HTTP requests to an upstream server.
The origin server is a publisher computer, which returns
either data or an error code.

As shown in FIG. 6, each server has its own local cache.
Cached items are indexed by URIL, and each item has an
expiration time and a cache validator. The cache validator is a
last-modified date or an opaque identifier string, set by the
origin server. If the URL is requested before it expires, its
cached item is served right away from cache. Otherwise, if the
URL has expired, a conditional request is made to the next
server; i.e., to the switchboard server or to the origin server.
The conditional request sends the cache validator to the next
server. In turn, the next server uses the validator to determine
whether the cached item for the URL is current. If the cached
item is current, the next server returns an HTTP validation
code, such as 304 Not Modified. Otherwise, if the cached data
for the URL is not current, then the next server sends the
updated data with an appropriate HTTP code, such as 200
OK.

In accordance with an embodiment of the subject inven-
tion, the servers aggregate requests. When a server receives
three client requests for the same file, the file is fetched from
the next server once, and served to all three clients. Aggrega-
tion occurs at each tier. Thus the reverse proxy servers aggre-
gate many web clients, and the switchboard servers aggregate
many reverse proxy servers. A proxy server does not invoke a
second request for a specific URL while it is receiving a
response for that URL. Instead, it adds a new client to the
response being received. This mechanism protects publishers
from receiving an excessive number of requests.

The servers are indifferent as to content type. All requests
are processed through the aggregation and caching mecha-
nisms, and all responses are treated as data streams. HTTP
supports “keep-alive connections” and reuses connections for
different web clients.

A load balancer 660 is used to distribute web client
requests among servers 632, 635 and 638.

A system server 670 is used (i) to authenticate publishers,
(i1) to manage the database of publishers, their broadcast
channels, and their channel media content, and (iii) to serve
up web content, such as HTML, XML and static graphic
assets, to web clients and publishers, such as the web pages
illustrated in FIG. 2-5 hereinabove. The video streams them-
selves are transmitted via the two tiers 630 and 640. Thus,
referring to FIGS. 2 and 3, the content in web pages 200 and
300, and the broadcast channel information is transmitted
from server 670 to web clients 612 and 618, and the video
stream that is played in viewing area 310 is transmitted from
the two tiers 630 and 640.

Server 670 includes an application server 672, a web server
675 and a database management system 678.

It will thus be appreciated by those skilled in the art that
web page 300 synthesizes live content, static assets and
hosted content in the same context. Specifically, content data,
via XML documents, and media objects are transmitted to
web clients 612 and 618, and in turn the web clients transform
and assemble the content, based on template pages served by
server 670. Transformations and page display are performed
using XSLT, JavaScript and HTML code, as described here-
inbelow in SOURCE CODE III-V. The subject invention’s

US 8,370,732 B2

9

web page assembly technology enables displaying live con-
tent from multiple remote sources into a single web page.
Multiple publisher content is assembled and presented in
what appears to a user as a single coherent entity, whereas in
fact it is a composite entity, built from multiple live broadcast
sources.

It will also be appreciated by those skilled in the art that the
architecture of FIG. 6 enables broadcast of multiple media
streams from a single peer source; i.e., one-to-many broad-
cast from a single peer machine to multiple simultaneous
viewers.

Details of operation of components of the system of FIG. 6
are described hereinbelow.

Reverse Proxy Servers 632, 635 and 638

Reverse proxy servers 632, 635 and 638 enable connec-
tions to publishers with dynamically assigned IP addresses.
Specifically, these servers enable broadcasters to be con-
nected to web clients using browsers that point to standard
URLs. For example, if a publisher broadcasts from his home
computer that has an internal IP address 0f 192.168.1.100 and
adynamically assigned IP address 0f24.66.77.88, then HTTP
servers enable the publisher to appear as http://liveweb.pix-
po.com/john, and to serve content to a standard web client.
The publisher does not have to run an HTTP server, and does
not have to create a port for forwarding configurations for his
NAT devices.

In accordance with an embodiment of the subject inven-
tion, reverse proxy servers 632, 635 and 638 operate as a
cluster, with automatic dynamic failover in the event of a
proxy failure. Reverse proxy servers 632, 635 and 638 run
their proxies as a service. Proxy services have configurable
options, including inter alia the options listed in TABLE 1.

TABLE I

Configurable options for HTTP servers

Ports for HTTP listen port
the server Reference to an AFS-hosted file which stores the
to listen on switchboard server addresses
Log files General (for general monitoring and debugging)
Access (Apache log file compatible)
Pid (for Linux service management)
Cache Cache directory (path to a large volume)

Cache minimum expire time

Switchboard Servers 642, 645 and 648

Firewalls and NAT routers are used in over 50% of home
broadband users today. Nearly all firewalls and NAT routers
block unsolicited inbound network traffic, which creates an
obstacle for systems that involve peers on the Internet. One
solution to overcoming this obstacle uses an intermediate
Internet host to proxy network traffic. Firewalls and NAT
routers generally block inbound traffic, but outbound traffic is
allowed. Since TCP/IP is bi-directional, once a peer computer
behind a firewall or NAT router establishes a connection to
another host, that host can then send data back to the peer
through the TCP/IP connection. Switchboard servers 642,
645 and 648 function as intermediate hosts.

Switchboard servers 642, 645 and 648 maintain connection
tables with records of connections between HTTP web clients
and publishers.

A load-balancing algorithm, based on least-loaded switch-
board, is used to designate a switchboard server for each
publisher. As such, generally any given publisher can connect
to any switchboard server.

The architecture in FIG. 6 does not rely on a “thread-per-
connection” approach for publishers 622 and 628. It has been

20

25

30

35

40

45

50

55

60

65

10
found that a low commodity switchboard server can handle
up to 20,000 simultaneous connections.
Switchboard servers 642, 645 and 648 run their switch-
boards as a service. Switchboard services have configurable
options, including inter alia the options listed in TABLE II.

TABLE I

Configurable options for switchboard servers

Ports for HTTP (HTTP servers should be configured to use this port)
the server Switchboard (logon server should direct publishers to use
to listen on this port)

SOAPAdmin
Log files General (for general monitoring and debugging)

Access (Apache log file compatible)

Pid (for Linux service management)
HTTP proxy URLs for error page response lookups

Cache directory (path to a large volume)

Cache minimum expire time
Cache 650

Use of cache within the subject invention provides many
advantages, including improved quality of service for web
clients, and decreased load on publisher computers. In accor-
dance with an embodiment of the subject invention, cache
650 is a large Andrew File System (AFS) volume, which all
servers have access to, although it may be appreciated by
those skilled in the art that other cache volumes may be used
instead. It has been found that a cache size of 200 GB suffices
to hold several weeks’ worth of data.

As shown in FIG. 6, each switchboard server and reverse
proxy server features its own local cache. These caches
reduce the amount of forwarded network requests necessary,
and also support streaming incomplete portions of media
files. In addition, the system includes the larger, global cache
650, which stores complete media files. Switchboard servers
642, 645 and 648 write to cache 650, and reverse proxy
servers 632, 635 and 638 read from cache 650.

In accordance with an embodiment of the subject inven-
tion, when a switchboard server receives a complete media
file, it copies the media file to cache 650, asynchronously
from the HTTP request from the reverse proxy server. Cache
650 stores completely received media items from all switch-
board servers. In general, dynamically generated items are
not stored in cache 650. Whether a file is dynamic or static is
determined by the HTTP compliant cache policy specified by
the response from a publisher. Cache 650 stores complete
media items, and generally is not used for streaming.

In accordance with an embodiment of the subject inven-
tion, cache 650 is a size-limited file system-based most
recently used (MRU) cache. Each item of content in the cache
has a “last used” timestamp. When a new data item is pulled
from a publisher, it is added to the cache. When a requested
item is found in the cache, the requested item is promoted to
the top of the cache by resetting its “last used” timestamp to
the current time.

Further in accordance with an embodiment of the subject
invention, a cache utility program monitors the space occu-
pied by contents of cache 650. The cache utility program
accepts as parameters a path to a cache directory and a pre-
specified size. If the space occupied by the cache contents
exceeds the pre-specified size, the cache utility program
deletes least recently accessed items until the occupied space
is sufficiently reduced. The cache utility program may be
scheduled to run on a timer, such as once every 30 minutes.

Reference is now made to FIG. 7, which is a simplified flow
chart of a sequence of events within a peer-to-broadcast sys-
tem, in accordance with an embodiment of the subject inven-

US 8,370,732 B2

11

tion. The flowchart of FIG. 7 is divided into three columns.
The leftmost column includes steps performed by a web
client computer, such as web client 612 or 618 (FIG. 6), the
middle column includes steps performed by a caching web
proxy, such as HTTP server 632, 635 or 638, and the right-
most column includes steps performed by a publisher com-
puter, such as publisher 622 or 628.

At step 705 the publisher requests to log on to an applica-
tion server using HTTPS/XML messaging, and the publisher
is directed to a switchboard proxy server, such as switchboard
server 642, 645 and 648. At step 710 the publisher logs into
the appropriate switchboard server and registers an endpoint,
such as “/username/”.

Atstep 715 a web client requests a publisher URL, such as
http://live.pixpo.com/username/<media_file>. At step 720
the caching web proxy receives the request and checks its
cache for the requested media item. If it is determined at step
725 that the media item is present in the cache, then at step
730 the item is delivered to the web client from the cache, and
at step 735 the web client receives the data it requested.
Otherwise, if it is determined at step 725 that the media item
is not present in the cache, then a determination is made at
step 740 whether or not the publisher is currently connected.

If the publisher is not connected, then at step 745 the
caching web proxy returns a “not found” error, and at step 750
the web client receives the error message instead of the
requested data. If the publisher is connected, then at step 755
the caching web proxy proxies the request to the publisher. At
step 760 the publisher receives the request from the caching
web proxy, and at step 765 the publisher streams a response
back to the caching web proxy.

At step 770 the caching web proxy writes the response
received from the publisher into its cache, and at step 775 the
caching web proxy sends the response back to the web client.
Finally, at step 780 the web client receives from the caching
web proxy the data it requested.

In accordance with an embodiment of the subject inven-
tion, cached partially streamed files can be accessed from
cache. L.e., a file does not have to be streamed to completion
in cache and stored in its entirety as a file before it can be
accessed from cache. Ifa viewer A starts watching a broadcast
from publisher B, the proxy server begins streaming content
to viewer A and caching it to file. If viewer C then starts
watching the same content from publisher B, the proxy server
detects this condition and begins streaming content to viewer
C from the partially completed stream in the cache. It will be
appreciated that this mechanism enables a “multi-cast” from
a single source broadcast to a plurality of viewers.

Load Balancer 660

Referring back to FIG. 6, load balancer 660 forwards
requests to HTTP servers 632, 635 and 638 based on a seg-
menting algorithm.

Server 670, Application Server 672, Web Server 675 and
Database Management System 678

Server 670 is responsible for orchestrating the entire deliv-
ery of static and live content from publisher to web client.
Application server 672 is responsible for authenticating pub-
lisher logins. Web server 675 is responsible for transmitting
HTML pages to publishers 622 and 628 and to web clients
612 and 618. Database management system 678 is respon-
sible for managing a database that stores publisher broadcast
channels, channel meta-data, and the meta-data for individual
files published within those channels.

Reference is now made to FIG. 8, which is a simplified
block diagram of a publisher system 800, for publishing
media within the peer-to-broadcast system of FIG. 1, in
accordance with an embodiment of the subject invention.

20

25

30

35

40

45

50

55

60

65

12

System 800 generally resides on publisher computers 622 and
628 (FIG. 6), although in an alternate embodiment system
800 may reside within web application 670. As shown in FIG.
8, publisher system 800 includes a video transcoder 810, for
generating bit-rate targeted data streams, an image processor
820, a network engine 830, a database manager 840, and a
widget engine 850. These components are described in detail
hereinbelow.

In accordance with an embodiment of the subject inven-
tion, components 810-850 are accessed via an application
programming interface (API). One such API is a Represen-
tational State Transfer (REST) interface. Information about
REST is available on the Internet at http://en.wikipedia.org/
wiki/Representational_State_Transfer. It will be appreciated
by those skilled in the art that other APIs may also be used to
interface components 810-850.

Video Transcoder 810

Video transcoder 810 includes a transcoder that generates
bit-rate targeted data streams in one or more formats, includ-
ing inter alia Microsoft Advanced Streaming Format (WMV),
Macromedia Flash VP6 (FLV) and DivX Networks v5.x
(AV]). Video transcoder 810 transcodes any source video
which can be viewed on the publisher’s computer, from a
source format to a target format. Since the target format is
generally chosen to be a format with ubiquitous implemen-
tations on all viewing platforms, viewers can play the video
without the need to download additional decoders on their
computers. Thus a typical viewer, using a web browser, is able
to view video for which he has no local decoder.

Further, and in conjunction with database manager 840, the
transcoding engine is able to generate multiple forms of an
original source video stream; e.g., multiple bit-rate target
forms of the video can be produced and stored as individual
files on the local file system, with the quality (size and bit-rate
targets) and other parameters being stored in the database.
This allows the viewing component to request and select an
appropriate bit-rate target. It also allows the system to create
‘clips’ from source video; e.g., the original source may an
hour long video at high definition but, following processing
by video transcoder 810, can exist (i) as a short three minute
sample clip at a quality and resolution suitable for delivery to
a mobile phone, and (ii) as a full length, but lower quality and
resolution version, suitable for delivery to a web browser
across the Internet.

Video transcoder 810 generally operates within an envi-
ronment where multiple simultaneous and asynchronous
requests may occur; e.g., requests from image processor 820
for still image representations of a video stream. As such,
video transcoder 810 relies on the “command queue” mecha-
nism and dynamic thread pool mechanism provided by wid-
get engine 850, which is used across all components to
sequence and manage the processing of asynchronous
demands that are typical in a network environment where
multiple viewers may be connected to a single broadcaster.
Image Processor 820

Image processor 820 includes graphic effects such as alpha
channels for transparency, gradients and shadows. Image pro-
cessor 820 also includes decoders for conventional image
formats, including the recently established RAW camera for-
mat.

Image processor 820 interacts with video transcoder 810,
whereby video transcoder 810 can be requested to seek to and
render one or more still image frames from a video stream.
These still frames can then be further manipulated by image
processor 820; e.g., to provide small size thumbnail represen-
tations of the video. In addition, multiple frames extracted
from relative time offsets in the video can be assembled into

US 8,370,732 B2

13

a multi-frame preview image, similar to a “contact sheet”
view of the video. These thumbnails and multi-frame views
can be used as user interface elements to present video con-
tent in static image formats, allowing a viewer to select which
video he wants to view. Image processor 820 also cooperates
with database manager 840. Similar to the multiple represen-
tations of a video stream described hereinabove, image pro-
cessor 820 can produce multiple representations of a still
image, in varying degrees of size and quality, where the
representations are stored in a file pool on the disk and are
tracked via database manager 840.

Image processor 820 generally operates within an environ-
ment where multiple simultaneous and asynchronous
requests, such as requests to image processor 820 for still
thumbnail representations of multiple files in a channel, are
possible. As such, image processor 820 relies on the “com-
mand queue” mechanism and dynamic thread pool mecha-
nism provided by widget engine 850, which is used across all
components to sequence and manage the processing of asyn-
chronous demands typical in a network environment where
multiple viewers may be connected to a single broadcaster.
Network Engine 830

Network engine 830 includes messaging engines for cli-
ent-to-client and client-to-server connections. Network
engine 830 provides bi-directional communication for send-
ing and responding to messages from broadcaster client
engines to a server, and from the server to the broadcaster
client engines.

It will be appreciated by those skilled in the art that in a
network where (i) there are multiple viewing clients, each of
whom may be viewing different channels and/or requesting
different video streams from a single publisher, and (ii) at the
same time the publisher may be actively updating the contents
of his broadcast, coupled with the fact that some operations
are more time consuming than others, the goal of achieving a
perception that the publisher is performing those multiple
operations in a non-blocking way (i.e., both viewer A and
viewer B can request the contents of different channels at
exactly the same moment in time and neither should perceive
that they are waiting for the other’s operation to complete)
requires a mechanism that efficiently queues incoming net-
work requests and, at the same time, fits those queued
requests into other activities which may materially affect the
result ofthose requests. Network engine 830 relies on specific
technologies provided by widget engine 850 that provide
multiple simultaneous connections for inbound and outbound
messages, while placing them in a context where the result of
one inbound message may affect the result of the next mes-
sage.

As an example, a broadcaster may be updating a channel
with new content, while multiple viewers are actively brows-
ing the contents of different channels, including the one being
updated. The broadcaster’s activities affect the database as
new content is added, as well as invoke video transcoder 810
and image processor 820 when thumbnails and bit-rate tar-
geted streams are generated in preparation for subsequent
broadcast. Requests from viewers for channel content must
be responded to, which may require processing by database
manager 840, transcoder 810 and image processor 820. Mul-
tiple viewers will establish multiple asynchronous connec-
tions with network engine 830, and data (e.g., textual content
like channel information and meta-data, or video streams)
will be streamed by network engine 830 to requesting view-
ers. Moreover, those viewers requesting information about
the newly created channel must get up to date information,
which means that network engine 830 must cooperate with
database manager 840, transcoder 810 and image processor

20

25

30

35

40

45

50

55

60

65

14

820 command request queue managers. Thus, while there
may be multiple simultaneous connections held open on a
particular publisher, each of those connections may result in
one or more commands being queued to the database,
transcoder or imaging command queues.

Database Manager 840

Database manager 840 includes an implementation of
SQL. Database manager 840 also includes a command gen-
erator and sequencer. Database manager 840 is the core of the
data management system for the publisher client. The data-
base manages several key tables, including inter alia channel
tables, files-in-channel tables and cache tables. In general, all
persistent data for a publisher is stored in the database, and the
database also exists in a context where there are multiple
layers of volatile and non-volatile caching.

Database manager 840 satisfies two requirements of the
overall system design; namely, (i) that requests and events
throughout the publisher ecosystem are effectively simulta-
neous and asynchronous, and (ii) that requests must at times
behandled in strict sequence. For example, a broadcaster may
be updating a channel at the same time the channel content is
being viewed by multiple viewers. The broadcaster’s activi-
ties change the database, including inter alia the channels
table and the files-in-channel table. At the same time, a view-
er’s activities may cause requests for thumbnails in the chan-
nel, in turn invoking image processor 820 for content not yet
decoded, which in turn results in a request for a video frame
transcode, which in turn results in a database update for the
newly produced thumbnail-all of which must be correctly
sequenced, yet fit into a framework where a second viewer’s
request for the same thumbnails will deliver them from the
cache and/or database layers, where the in-memory cache
itself is unpredictably volatile.

In order to accomplish this degree of simultaneous trans-
action handling in an on-demand/just-in-time environment,
database manager 840 relies on the “command queue”
mechanism and dynamic thread pool mechanism provided by
widget engine 850, which is used across all components to
sequence and manage the processing of asynchronous
demands typical in a network environment where multiple
viewers may be connected to a single broadcaster, causing
multiple and simultaneous asynchronous read/write com-
mands to the database. Each write, for example, may be a
multiple-faceted operation, as when a channel is updated with
new files, causing several tables to be updated, while still
allowing multiple reads to be simultaneously in progress.
This requires multiple threads, and command queues to man-
age those threads in order to achieve dynamic responsiveness
required ofthe database in an environment subject to multiple
simultaneous transaction requests. Conventional native trans-
action handling found in database implementations is insuf-
ficient for this.

Widget Engine 850

Widget engine 850 supports widget layers such as vectors,
strings and maps. Widget engine 850 also includes MAPI
support. Optionally, widget engine 850 may also include
support for third party widgets. Widget engine 850 includes
two components—(i) a dynamic thread pool management
sub-system, and (ii) generic command queue processors.

In accordance with an embodiment of the subject inven-
tion, multiple thread pool managers are created. Threads are
pooled so that they can be re-used without the processor
overhead that typically results from thread setup and tear
down. However, in order to avoid proliferation of too many
threads, which also results in processor overhead, each pool
has a preset upper limit of running threads. A request for a
thread to perform an operation will either be allocated to a

US 8,370,732 B2

15
dormant thread from the pool or, if all of the threads in the
pool are currently active, be queued for later processing when
one of the currently active threads is released. Threads are
also subject to time-based automatic destruction. Specifi-
cally, threads which have been dormant for a preset length of
time will exit, releasing system resources used by the thread.

Thread pools are used in the creation of command process-
ing queues. A command queue is a series of generic com-
mands which are executed in sequence under control of a
thread, which in turn is managed by a thread pool manager. In
order to enable multiple simultaneous event handling across
multiple components which may need each other as
resources, command queues are used to sequence “transac-
tions” for all contexts, while still allowing multiple non-
blocking event handling to exist across components.

For example, a request for a thumbnail representation of a
video frame may be the result of an inbound message from
network engine 830. Network engine 830 has multiple
threads from a managed thread pool available for handling
inbound message requests. If one of those requests is for a
video stream, network engine 830 will queue a request com-
mand for the stream location to database manager 840, and
the thread for that command will be blocked until the database
command processing queue processes that command.

Atthe same time network engine 830 may receive a request
for a thumbnail, and will queue a “get thumbnail” command
to the imaging processor queue. Another thread from another
pool manages the sequential execution of requests to image
processor 820. This second thread will also be blocked, wait-
ing for the thumbnail to be returned. In the meantime, the
database command queue will receive execution priority,
retrieve the file location of the requested video stream, and the
command will complete. The network thread for that connec-
tion will then unblock and start streaming the requested
video. The image processor queue may then receive execu-
tion priority, and the thumbnail request command will
execute. As a result of this execution, the video transcoder
thread may be activated, and once it returns an extracted
thumbnail, image processor 820 will queue a “store” com-
mand, for the database command thread to store the thumb-
nail; but since the thumbnail will be returned from in-memory
cache, image processor 820 can immediately return the
requested thumbnail without first waiting for the database
command to complete. However, a subsequent request for the
same thumbnail from the database will of necessity be queued
behind the first “store” command. When the thread managing
the database command queue executes, it will do so in the
queued order, and thus the “store” and “retrieve” commands
will be executed in the correct sequence, while still allowing
the initial request to be satisfied immediately without waiting
for the database queue.

The command queuing architecture described hereinabove
is dictated by the fact that there are potentially many hundreds
of'requests that may be being processed for a single web page
view, such as a page full of thumbnails, where some of the
thumbnails are cached, some are in the database, and some
have not even been decoded yet. Additionally, the same page
of thumbnails may be requested by many other viewers at the
same time. It is essential that image decodes, video
transcodes and database accesses, which are processor inten-
sive operations, do not get repeated over and over. Without the
above command queuing process across multiple threads,
there are cases where the same decode could be requested
over and over and, in a worst case, multiple threads activated
directly from network engine 830 to get the same thumbnail,
when in fact it only need be decoded once and placed into the
database and/or cache once.

20

25

30

35

40

45

50

55

60

65

16

The combination of multiple managed threads, each
responsible for command sequencing queues for multiple
components, is important to the success of the overall archi-
tecture in an asynchronous and on-demand environment
which must deal with unpredictable and un-sequenced
requests from an essentially unbounded and unpredictable
viewer base. All components of system 100 exist within a
cooperative on-demand framework. A goal of the command
queuing architecture approach is to provide a processing
workflow that is “as little as possible, as late as possible, as
few times as possible”. Intensive processing, such as extract-
ing a thumbnail from a video stream, or scaling a representa-
tion of a still image, is postponed until such time as it is
necessary. Having undertaken the processing, the result is
stored in multiple levels of volatile and non-volatile cache.

For example, an image may be added to a channel but has
not yet been viewed in any context. When a viewer subse-
quently requests the contents of the channel, which can be
minutes, days or weeks later, the system first checks to see if
the image thumbnails for the content are in a volatile cache;
typically, abounded in-memory cache. If the images are in the
memory cache, they are delivered from there directly. If the
images are not in the memory cache, the framework deter-
mines ifthe images are in the database. If the images are in the
database, the images are delivered from the database and
placed in the in-memory cache. Ifthe images are in neither the
cache nor the database, image processor 820 is invoked and
the thumbnails are decoded. Following decode, the thumbnail
images are placed into the database and into the in-memory
cache. Subsequent requests for the images, possibly from
other viewers at a later time, are delivered directly from the
in-memory cache. Should the memory version be purged, the
next delivery is from the database, at the same time placing it
into the in-memory cache.

The above general workflow applies to video thumbnail
extraction, to database inquiries, and to other such operations.
There are multiple levels of cache involved in many common
operations that are processor intensive. Database manager
840, image processor 820 and network engine 830 are subject
to multiple simultaneous requests from both local publisher
and remote server and viewer activities. The same “command
queue” mechanism, with support from the dynamic thread
pool mechanism in widget engine 850, is used across all of
these components to sequence and manage the processing of
asynchronous demands typical in a network environment.
Portal Integration

In reading the above description, persons skilled in the art
will realize that there are many apparent variations that can be
applied to the methods and systems described. An important
such variation is the ability for a publisher to broadcast his
media to a web portal. Reference is now made to FIGS.
9A-9E, which show a sample portal web page including an
embedded portion broadcast from a publisher, in accordance
with an embodiment of the subject invention. The portal site
in FIG. 9A is a foreign site; i.e., a site that is not hosted within
domains of broadcasting system 100 (FIG. 1). In general, the
portal site in FIG. 9A belongs to a third party. The style of the
portal page, including inter alia headers and banners, desig-
nated by numeral 1a, comes from a portal owner’s URL,
designated by numeral 15. The bulk of the content in the
portal page, designated by numeral 1¢, also comes from the
portal owner’s URL 15.

The portal page illustrated in FIG. 9A contains mixed
elements, such as the navigation element designated by
numeral 2, which contains both portal-specific entities “Site”
and “About”, and entities from broadcasting system 100

US 8,370,732 B2

17

including channel buttons “Tech Classics”, “Machinima”,
“Twitch Culture”, “Cartoons”, “Movies” and “Fast Cars”,
designated by numeral 3.

The portal page includes an inline frame (iFrame) sourced
from broadcasting system 100, designated by numeral 4. Area
4 is owned by broadcasting system 100, which provides con-
tent in area 4. The content provided by broadcasting system
100 is dynamically updated. An iFrame is an HTML construct
that enables external objects to be included, such as an exter-
nal HTML page. The source

<IFRAME> SRC=URI </IFRAME>
is used to embed content from a specified universal resource
identifier (URI) into a web page. iFrames can act as targets for
other links.

Shown in FIG. 9A are thumbnails, designated by numeral
5, that represent content sourced from system 100 by peer
publishers on the edge of a network. Area 4 is dynamically
generated whenever the portal page is constructed by system
100, which has access to the group of publishers who are
authorized to broadcast into the portal. System 100 deter-
mines which publisher content to include, and assembles the
visible set of content for the specific channel, among the
channels 3, that is chosen. Determination of which publisher
content to include by system 100 may be random, or based on
most recent or most popular, or such other criteria.

The portal page also includes a search control element,
designated by numeral 7, which communicates with system
100. As such, the portal owner does not have to provide search
engine support; instead, the search is performed by system
100 and the results delivered into iFrame 4. When a viewer
selects a channel, such as the “Fast Cars” channel 3, a view of
the selected channel is displayed in iFrame 4.

In accordance with an embodiment of the subject inven-
tion, a publisher is able to broadcast his own content directly
into the portal. Specifically, a “My Broadcast” control, des-
ignated by numeral 8, enables the publisher to add content
into the portal. The content that the publisher adds appears as
if it is coming from the portal, whereas in fact it is coming
from the publisher’s computer. Shown in FIG. 9B is a pub-
lisher’s view of his own broadcast channel content, display-
ing media files designated by numeral 2, which the publisher
has added to his channel.

Shown in FIG. 9C is a user interface for the publisher to
select media content, designated by numeral 1, to add to his
channel. In accordance with an embodiment of the subject
invention, the in-page iFrame communicates with the pub-
lisher computer, which decodes the publisher’s media and
presents a preview thumbnail. Having selected a media file
and added relevant meta-data, such as atitle and a description,
the publisher makes his content available to the entire portal
audience by pushing an “Add to Channel” button, designated
by numeral 2. This event is communicated to the publisher
computer, which transcodes the publisher’s media into a bit-
rate targeted form, stores meta-data, and communicates with
system 100 that the publisher’s media is ready for broadcast
into the portal.

Shown in FIG. 9D is a user interface for the publisher to
preview his local content. The publisher clicks ona “Preview”
button, designated by numeral 1a, and the publisher computer
then generates a preview window, designated by numeral 15,
and plays the publisher’s media into the preview window.
After adding the publisher’s content into the portal, the pub-
lisher’s transcoded media file is available directly to viewers
from the portal page, as shown in FIG. 9E and designated by
A. The set of media, designated by numeral 1, is dynamically
updated to reflect the publisher’s newly added content. View-
ers can play the newly added media files. The video being

20

25

30

35

40

45

50

55

60

65

18

played in FIG. 9E, designated by numeral 2, appears to be
integrated into the portal, but in fact it is actually being
sourced from system 100 and not from the portal’s web site.
Similarly, other publishers’ content, designated by numeral 3,
also appears as part of the channel, and can be viewed and
played.

Reference is now made to FIG. 10, which is a simplified
diagram of a peer-to-portal broadcasting system, in accor-
dance with an embodiment of the subject invention. FIG. 10
includes four components; namely, a portal web server 1010
that serves web pages to a third party portal, a publisher peer
computer 1020 that is operated by one or more individuals
who wish to publish media to the portal, a broadcast server
1030 that feeds broadcast content into the portal, and a viewer
computer 1040 that is operated by a user browsing the web
portal. It will be appreciated by those skilled in the art that
viewer computer 1040 and publisher computer 1020 may be
the same computer, when the publisher is browsing the portal.
Whereas FIG. 1 addresses the three components publisher
peer computer, broadcast server and web client peer com-
puter, FIG. 10 has the additional portal web server 1010.
Whereas in FIG. 1 the web client views the publisher’s media
content while browsing a web page on the broadcast server, in
FIG. 10 the web client is browsing a web page on the third
party web portal server. In both figures the publisher com-
puter is proxied through the broadcast server.

The main web page for the web portal, stored on portal web
server 1010, includes an iFrame with an embedded SRC that
points to broadcast server 1030. Generally, while viewing a
portal web page, a publisher initiates a broadcast to the portal
by clicking on a control, such as the “My Broadcast” link
shown in FIG. 9A. In turn a broadcast application 1050,
residing on publisher computer 1020, receives the portal IP
address and enables the publisher to select media files to
broadcast. Broadcast application 1050 sends meta-data about
the selected media files to broadcast server 1030, and broad-
cast server stores the meta-data in a database 1060, for later
access.

Viewer computer 1040 includes a web browser 1070,
through which a user browses the Internet, and in particular,
the web portal. When web browser 1070 navigates to the web
portal URL, it requests the main portal page from portal
server 1010.

In order to serve the portal web page, portal server 1010
requests the SRC for the iFrame from broadcast server 1030.
Broadcast server 1030 includes an iFrame source code gen-
erator 1080, which dynamically generates iFrame source
code forthe SRC, inresponse to the request from portal server
1010. Broadcast server 1030 sends the iFrame source code
thus generated to portal server 1010. Portal server 1010
embeds the iFrame source code within the portal web page,
and sends the updated portal web page with the embedded
iFrame source code to web browser 1070.

The iFrame source code includes JavaScript, which web
browser 1070 executes when it renders the portal web page.
The JavaScript requests an XML document from broadcast
server 1030. Upon receipt of the request, broadcast server
1030 retrieves the appropriate meta-data from database 1060
and dynamically generates an XML data container document
on-the-fly. Broadcast server 1030 then sends the generated
XML document to web browser 1070.

After receiving the XML document, web browser 1070
continues executing the JavaScript, which loads an XSLT
transformation and applies the transformation to the XML
document. The result of the XSLT transformation on the
XML document is an HTML snippet that is embedded into
the iFrame following completion of the transformation. The

US 8,370,732 B2

19

HTML snippet includes code to support clickable thumbnail
images that reference endpoints, represented by proxy end-
points, for the publisher’s broadcast media on publisher com-
puter 1020.

After web browser 1070 renders the HTML snippet, a
viewer of the portal can then click on a thumbnail image, and
the portal launches a media player for playing the media
associated with the thumbnail image, as shown in FIG. 9E.
The media content itself'is streamed from publisher computer
1020, via broadcast server 1030 acting as a proxy.

It will be appreciated by those skilled in the art that the
functions of broadcast server 1030 may be distributed among
a plurality of broadcast servers. In particular, a first group of
broadcast servers may be dedicated to serving the iFrame
source code, the XML documents and the XSLT transforms;
and a second group of broadcast servers may be dedicated as
a proxy to stream media from publisher computer 1020. The
second group of broadcast servers corresponds to servers 632,
635, 638, 642, 645 and 648 in FIG. 6.

Reference is now made to FIG. 11, which is a simplified
flowchart of a method for peer-to-portal broadcasting, in
accordance with an embodiment of the subject invention.
FIG. 11 is divided into four columns, corresponding to the
four components of FIG. 10. The leftmost column includes
steps performed by publisher peer computer 1020. The sec-
ond-from-leftmost column includes steps performed by
broadcast server 1030, the second-from-rightmost column
includes steps performed by portal web server 1010, and the
rightmost column includes steps performed by viewer web
browser 1070.

At step 1105 the publisher computer initiates preparation
of a broadcast by clicking on a control within a portal web
page, such as the “My Broadcast” link shown in FIG. 9A. The
portal web page includes an iFrame with a SRC that points to
the broadcast server. At step 1110 the publisher computer
prompts the publisher to select specific media files for broad-
cast to the portal. At step 1115 the publisher computer sends
meta-data about the selected media files to the broadcast
server.

At step 1120 the broadcast server receives the meta-data
from the publisher computer. At step 1125 the broadcast
server stores this meta-data in a database, for later retrieval
when required, at step 1160, to generate an XML container
document for the meta-data.

At step 1130, the web browser navigates to the portal URL
and requests the portal web page from the portal server. In
response, at step 1135 the portal server requests the iFrame
source code from the broadcast server. At step 1140 the portal
server receives the iFrame source code from the broadcast
server. At step 1145 the portal server embeds the iFrame
source code in the portal page and passes it to the viewer web
browser.

20

30

40

45

50

20

At step 1150 the viewer web browser, in rendering the
portal web page, encounters the code in the iFrame, and
executes the code. At step 1155 the code executing in the web
browser requests an XML document from the broadcast
server. At step 1160 the broadcast server retrieves the meta-
data that was stored in the database previously at step 1125,
and generates an XML data-container document therefrom.
At step 1165 the viewer web browser receives the XML
document from the broadcast server, and requests an XSLT
transformation, to transform the XML data-container into an
HTML document.

At step 1170 the broadcast server generates the XSLT
transformation, which it sends to the viewer browser. At step
1175 the viewer browser receives the XSLT transformation
from the broadcast server. At step 1180 the viewer browser
transforms the XML document according to the XSLT trans-
formation. The result of the transformation is a portion of
HTML, referred to as a “snippet”. At step 1185 the viewer
browser embeds the HTML snippet into the iFrame following
completion of the transformation. The viewer browser then
renders the portal web page at step 1190, which now includes
clickable thumbnail images that activate a media player to
view streamed broadcast media, which originates at the pub-
lisher computer.

Implementation Details

Provided below are five portions of detailed sample source
code, with line numbering for reference, for generating the
portal web page shown in FIG. 9A, in accordance with an
embodiment of the present invention. The five source code
portions are as follows:

SOURCE CODE I: HTML SOURCE FOR MAIN PORTAL

WEB PAGE
SOURCE CODE II: HTML SOURCE FOR IFRAME (ele-

ment 4 in FIG. 9A)

SOURCE CODE III: XML DOCUMENT RETURNED

FOR A MEDIA ITEM
SOURCE CODE IV: XSLT FOR TRANSFORMING THE

XML INTO HTML
SOURCE CODE V: HTML OUTPUT FROM TRANS-

FORM
The five portions of source code step through the various
phases of dynamic HTML generation, for broadcast from a
publisher peer computer into a foreign web portal as illus-
trated in FIG. 9A.

Referring to SOURCE CODE 1, the portal main page
includes many kinds of elements, as desired by the portal
owners. Lines 98-106 define an iFrame named “pixpo”, cor-
responding to area 4 in FIG. 9A. This iFrame area is set aside
by the portal owner, and includes code necessary to instanti-
ate a network container used by broadcast server 1030. The
iFrame references the URL
http://partners.pixpo.com/group/twitchtv/container/
view?container=techclassics&pxLocation=

SOURCE CODE I: MAIN PORTAL PAGE

<html|>
<head>

</head>
<body>

= O Do~y R W =

— =

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN"">

<title>Tom’s Guide : Tom’s Hardware</title>
<link rel="stylesheet” type="text/css™ href="inc/style.css”>
<script>var pgml = 0;</script>

<div id="banner”>
<div class="logo”><img src="img/logo_01.gif” width="165" height="45"
border="0" alt="TwitchTV”></div>

US 8,370,732 B2
21 22

-continued

SOURCE CODE I: MAIN PORTAL PAGE

<div class="“topAd”><img
sre="http://www.kanoa.net/tgpub/img/728x90_07.jpg” width="728" height="90"
border="0" alt="Banner”></div>
<div id="“topNav”><table cellspacing="0"><tr>
<td><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=techclassics”
target="pixpo” class="uno”>Tech Classics</td>
<td><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=machinima”
target="pixpo” class="“uno”>Machinima</td>
<td><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=twitchculture”
target="pixpo” class="uno”>Twitch Culture</td>
<td><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=cartoons”
target="pixpo” class="uno”>Cartoons</td>
<td><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=movies”
target="pixpo” class="“uno”>Movies</td>
<td><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=fastcars”
target="pixpo” class="uno’>Fast Cars</td>
<td width="80"> </td>SITE</td><td>ABOUT</td><td
width="10"> </td></tr></table><div class="aero”></div></div>
</div>
<div id="left”>
<img sre="“img/feature.jpg” width="260" height="195" border="0"
alt="Feature”>
<div class="teal”>
<table cellspacing="0" height="60">
<form
action="http://partners.pixpo.com/group/twitchtv/search/results”
method="get” target="pixpo”>
<tr><td width="9"></td>
<td><input type="text” class="search” name="“query”
value="Search TwitchTV dude...”></td>
<td width="5"></td>
<td><input type="image” src="img/btn_search.gif” value="“Search”
name="Search” title“Search” alt="Search” width="60" height="25"
border="0""></td>
<ftr>
</form>
<ftable>
<div class="“divvy”></div>
<div class="padit”>
<p><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=techclassics”
target="pixpo” class="“uno”>Tech Classics Video interviews,
news reports and reviews from TwitchGuru, Tom’s Hardware Guide, TG Daily
and other TG sites.</p>

<p><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=machinima”
target="pixpo” class="uno”>Machinima Computer-generated imagery
(CGI), and 3D animation video, fan-created and customized movies based on
popular video games.</p>

<p><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=twitchculture”
target="pixpo” class="uno”>Twitch Culture Random user-
generated video that focuses on the Twitch generation and its technology,
games, movies, music, comics, and entertainment.</p>

<p><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=cartoons”
target="pixpo” class="“uno”>Cartoons The latest and most popular
clips of vintage anime and cartoons from television, feature films and the
Web.</p>

<p><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=movies”
target="pixpo” class="uno”>Movies Clips, previews and trailers of
the latest and most popular feature films and television shows, as well as
short films, spoofs, and customized re-edits.</p>

<p><a
href=“http://partners.pixpo.com/group/twitchtv/container/view?container=fastcars”

US 8,370,732 B2

23

-continued

SOURCE CODE I: MAIN PORTAL PAGE

165
166
167

target="pixpo” class="“uno”>Fast Cars The latest hot rods,
gorgeous vintage automobiles, innovative concept cars, collectors items and
eye-catching add-ons and accessories.</p>
</div>
</div>
</div>
<div id="middle”>
<div class="padit”>
<iframe id="pixpo” name="pixpo”
sre="http://partners.pixpo.com/group/twitchtv/container/view?container=tech
classics&pxLocation="
width="540" height="280"
marginwidth="0" marginheight="0"
hspace="0" vspace="0"
frameborder="0"
style="“background-color: #000;”>
</iframe>
<table cellspacing="0"<
<tr><td colspan="3"<
<div class="channel”>
<div class=“pur”>TWITCHGURU FEATURES</div>
<table cellspacing="0"<
<tr><td width="140" valign="top” align="left”><img
sre="http://images.tomshardware.com/_teaser/160x200/grindhouse.jpg”
width="140" border="0" alt="" class="bord"”></td>
<td width="6"></td>
<td width="396" valign="top”>The Zombie
Effect: How Horror Films and Video Games Have Bled
Together
Horror video games have become an increasingly popular
genre in recent years, thanks to the influence of many classic zombie and
slasher flicks. TwitchGuru explores the connection between horror games
and horror movies.

The
Fall Games Preview, Part 1
The fall season has arrived, and
with it comes a lengthy list of new games for current consoles, PCs and
next generation hardware. Here’s a look at nine top titles for the month of
October.

CGI Gone
Awry: The Worst Special Effects of the Computer-Generated Era

Computer-generated imagery (CGI) has been used in film for nearly two
decades, but a string of poor films and cheesy effects has made CGI a four-
letter word for many. Here’s a look at the worst offenders.</td>
<ftr>
<ftable>
</div>
</td>
<ftr>
<tr><td colspan="3">
<table cellspacing="0" width="100%">
<tr><td width="270" valign="top”>
<div class="channel”>
<div class="red”>IMAGE GALLERY</div>
<table cellspacing="0">
<td width="6"></td>
<td width="264" valign="“top”><a
href=“http://twitchguru.com/2006/09/19/image_preview_september_14/index.htm
1”>Battlefield: Bad Company and Too Human
<img
sre="http://images. tomshardware.com/_teaser/60x60/bfbc_01.jpg” width="60"
height="60" align="right” hspace="“6">The Battlefield series is coming to
next-generation consoles with a single player twinge and “90 percent
destructible” maps. And Too Human marks the arrival of yet another
exclusive Xbox 360 title. Let’s take a look.</td>
<ftr>
</table>
</div>
</td>
<td width="2"></td>
<td width="270" valign="top™>
<div class="channel”>
<div class="red”>IMAGE GALLERY</div>
<table cellspacing="0">
<td width="6"></td>
<td width="264" valign="“top”>

24

US 8,370,732 B2

25

-continued

SOURCE CODE I: MAIN PORTAL PAGE

White Gold: War in Paradise and Call of Duty 3
<img
sre="http://images.tomshardware.com/_teaser/60x60/cod3-1.jpg” width="60"
height="60" align="right” hspace="“6">The future, near enough to be as we
know it? Military struggle? Caribbean islands and graphics not unlike Far
Cry? Hot damn, we have an FPS! Germans? Rangers? Rain? Mud? Hot damn, we
have a Call of Duty sequel!</td>
<ftr>
</table>
</div>
</td>
</tr>
<ftable>
<div class="channel”>
<div class=“pur”>TODAY S NEW S</div>
<table cellspacing="0">
<tr><td width="268" valign="top”><a
href=“http://www.tgdaily.com/2006/10/19/apple_iphone_rumor/”
target="_top”>Apple files for iPhone trademark-rumor

<a
href=“http://www.tgdaily.com/2006/10/19/cellphone_shipments_g3_2006/"
target="_top”>Mobile phone shipments keep growing on a fast
pace

<a href="http://www.tgdaily.com/2006/10/19/sony_battery_recall/”
target="_top”>Battery recall estimated to cost Sony at least $430
million

<a href="http://www.tgdaily.com/2006/10/18/sun_virtualization/”
target="_top”>Sun wants to be different in virtualization
market

</td>
<td width="6"></td>
<td width="268" valign="“top”>
<a href="http://www.tgdaily.com/2006/10/19/china_internet_rumors_outlawed/”
target="__top”>Internet rumors outlawed in China

<a href="http://www.tgdaily.com/2006/10/19/100gb_xbox_drive/”
target="_top”>100 GB Xbox 360 hard drive on the way?>/a>

<a href="http://www.tgdaily.com/2006/10/19/nvidia_nvperfkit_21/”
target="_top”>Nvidia offers performance boosting debugging kit for
Linux and Windows

<a href="http://www.tgdaily.com/2006/10/19/invisible_cloak/”
target="_top”>Scientists create ‘invisibility’ cloak that bends
microwaves

</td>
<ftr>
<ftable> </div>
</div>
</td>
<ftable>
</div>
</div>
<div id="right”>
<div class="teal”><div class="padit”><center>Broadcasting
on Twitch TV </center>

Twitch TV is an eclectic collection of what’s hot right now in the Twitch
world and we want you in the mix.

To participate in this free flowing video love-in, just download the PIXPO
Broadcast Engine for Twitch TV Within minutes you can add your own video
to the Twitch TV mix-streaming right from your desktop.

The PIXPO Broadcast Engine for Twitch TV is a quick 3mb PC download that
you can install in less time than it takes to read this page.

Once installed and running, you’ll find an easy “My Broadcast” link right
here within the Twitch TV page that gives you access to broadcast your
videos right into Twitch TV.

Once your computer is turned off your videos will not be available on
Twitch TV until your computer is turned back on.

Download the PIXPO Broadcast Engine for Twitch TV and join the party.
</div>
</div>
</div>
<div>
</body>
</html>

Referring to SOURCE CODE I1I, the iFrame includes
dynamically generated content; i.e., iFrame source code gen-

26

65 erator 1070 on broadcast server 1030 generates SOURCE
CODE II. In turn, the generated SOURCE CODE II contains

US 8,370,732 B2

27

calls to JavaScript in order to transform XML documents that
are sourced from broadcast server 1030.

Lines 241-252 define a framework for the iFrame. Lines
253 and 254 reference style sheets that allow the iFrame to
have the look and feel of the framing portal. Lines 255-257
reference style sheets provided by the portal owners, and
sourced from the owners’ servers. Lines 258, 259 and 278-
283 correspond to the bridge code described hereinabove
with reference to FIG. 4, that allows 127.0.0.1 to be mapped
to localhost.mixpo.com. Line 285 corresponds to channel
specific generated code.

Lines 289-297 define a “My Broadcast” control that ini-
tiates an application for publishing media to the portal.

Lines 334-358 form a block of dynamically generated code
to manage media elements in a channel. For each media item
in the iFrame, one such block of code is dynamically gener-

10

28

ated. Within this block of code, lines 336 and 337 generate
executable code, which contains calls to an interface that
returns an XML document. The XML document returned
from the interface is listed in SOURCE CODE III hereinbe-
low. The XML document contains meta-data and endpoints
related to the actual live publisher’s content. At lines 352-354
the XML document is transformed (this.transform()) to
HTML that contains the source code for placing clickable
thumbnails onto the portal page, and the HTML is inserted
dynamically (box.insertBefore()) into the portal web page.
The XSLT transformation, used to transform the XML docu-
ment to HTML, is listed in SOURCE CODE 1V hereinbelow.
The HTML output from the transformation, which is inserted
into the portal page, is listed in SOURCE CODE V herein-
below.

Blocks 359-383 and 384-408 are similar to the block at
lines 337-362, and are repeated for all items in the iFrame.

SOURCE CODE II: IFRAME SOURCE

<{DOCTYPE html PUBLIC “-/W3C//DTD XHTML 1.0 Transitional//EN"
“http://www.w3.org/TR/xhtm11/DTD/xhtm!1-transitional.dtd”>

<htm! xmlns="http://www.w3.0rg/1999/xhtm|” lang="“en-CA” xml:lang="en-CA”>
<head>
<base href="http://partners.pixpo.com/group/twitchtv/container/” />
<meta http-equiv="Content-Type” content="text/html; utf-8” />

291

296

<meta name="description” content="Video sharing is quick and easy with
PiXPO. Free video share tool. Create your own video website in minutes.” />
<meta name="keywords” content="video sharing, video share, free video
sharing, share videos, share, website, community, websites, videos, pixpo’
/>
<title>Portal Experience</title>
<link href="/css/site.css™ rel="stylesheet” type="text/css” />
<link href="/css/main.css” rel="stylesheet” type="text/css” />
<link href=“container.css” rel="stylesheet” type="text/css” />
<link href="http://images.tomshardware.com/Design/style/twitchtv.css”
rel="stylesheet” type="text/css” />

<script type="“text/javascript”
sre="http://127.0.0.1:5278/api/client/localhost” charset="utf-8"></script>

<script type="“text/javascript” src="/js/site.js” charset="utf-8”>
</script>

<script type="text/javascript” src="/js/core.js” charset="utf-8”>
</script>

<{--[if IE]>

<script type="text/javascript” src="/js/ie-compatibility.js”

charset="utf-8></script>

<![endif]-->
</head>
<body class=“main”>
<noscript>

<p>Javascript is required.</p>
</noscript>
<div id="“PxLoading”>Loading...</div>
<div id="page”>

<script type="text/javascript”>

document. getElementByld(‘page’).style.display = ‘block’;

</script>

<iframe class=“bridge”
sre="http://localhost.pixpo.com:5278/srv/bridge.htm!”></iframe>

<iframe class=“bridge”
sre="http://liveweb.pixpo.com/static_assets/bridge2.htm!”></iframe>

<iframe class=“bridge”
sre="http://partners.pixpo.com/bridge.html”></iframe>

<div id="header” class="contain”>

5

<hl id=“recent”>Now Playing: Fast

Cars</h1>

Broadcast

Your Video Here
<script type="text/javascript”>
var myBroadcast = getE1(‘broadcastToday’);
if(localHost.user != null)
{
myBroadcast.id = ‘myBroadcast’;
myBroadcast.href = “/group/twitchtv/mybroadcast/index’;
myBroadcast.firstChild.nodeValue = ‘“My Broadcast’;

}

US 8,370,732 B2
29 30

-continued

SOURCE CODE II: IFRAME SOURCE

297 </script>

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

</div>

<div id=*pageBody” class="“contain”>
<div id="mediaWrap”>

<div id="media” class="contain>

<script type="text/javascript”>

var transform = new Transform(psb, ‘/xslt/video.xslt”);
var totalltems = 10;

var collectionSize = 6;

var requestedItems = 0;

var loadedItems = 0;

var page = 0;

var ugcTimer = new WaitTimer();

ugcTimer.show = function()

getE1(‘placeholder’).style.display = ‘block’;
this.pane = notifications.request.loading(‘placeholder’);

ugcTimer.hide = function()
getE1(*placeholder’).style.display = ‘none’;
function DoneLoading()
requestedItems++;
ugcTimer.clear();

if(requestedItems == collectionSize && loadedItems == 0)

{
if(page == 0)
getE1(‘media’).appendChild(createE1(*p’, null, ‘Sorry but

there are no videos to view.”));

else
getE1(‘media’).appendChild(createE1(*p’, null, ‘Sorry but

there are no more videos to view.”));

}

</script>
<script type="text/javascript”>
ugcTimer.mark();
var item = new Request(lwb, */api/media/f4A9b07¢c6-1852-4621-bbd9-

f345cae6d241%);

item.setContainer(‘media’);
item.user = ‘johntv’;
item.xslt = transform;
item.onwait = function(){ };
item.onerror = function(){DoneLoading();};
item.onclientoffline = function(){DoneLoading();};
item.onsuccess = function()
{
loadedItems-++;
DoneLoading();
if(loadedItems <= totalltems)

var box = getE1(*media’);

var div = createE1(*div’, {className:‘item’});
box.insertBefore(div, getE1(*placeholder’));
this.transform(‘uge’, div, {user:‘johntv’,

container:‘fastcars’, page:page});

item.send();

</script>

<script type="text/javascript”>

ugcTimer.mark();

var item = new Request(lwb, */api/media/bdf6c944-a58e-4dc5-828c-

0786c96€9a57");

item.setContainer(‘media’);

item.user = ‘johntv’;

item.xslt = transform;

item.onwait = function(){ }

item.onerror = function() {DoneLoading();};
item.onclientoffline = function() {DoneLoading();};
item.onsuccess = function()

loadedItems++;
DoneLoading();
if(loadedItems <= totalltems)

{

US 8,370,732 B2

31 32
-continued
SOURCE CODE II: IFRAME SOURCE
375 var box = getE1(*media’);
376 var div = createE1(*div’, {className:‘item’});
377 box.insertBefore(div, getE1(*placeholder’));
378 this.transform(‘uge’, div, {user:‘johntv’,
379 container:‘fastcars’, page:page});
380
381
382 item.send();
383 </script>
384 <script type="text/javascript”>
385 ugcTimer.mark();
386 var item = new Request(lwb, ‘/api/media/bce90el3-d9ae-475a-b5c6-
387 2e13d153ebb6”);
388 item.setContainer(‘media’);
389 item.user = ‘johntv’;
390 item.xslt = transform;
391 item.onwait = function(){ };
392 item.onerror = function(){DoneLoading();};
393 item.onclientoffline = function(){DoneLoading();};
394 item.onsuccess = function()
395
396 loadedItems++;
397 DoneLoading();
398 if(loadedItems <= totalltems)
399
400 var box = getE1(‘media’);
401 var div = createE1(*div’, {className:‘item’});
402 box.insertBefore(div, getE1(‘placeholder’));
403 this.transform(‘uge’, div, {user:‘johntv’,
404 container:‘fastcars’, page:page});
405
406
407 item.send();
408 </script>
409 </div>
410 </div>
411 <div id="footer>
412 <p id=“poweredPiXPO”>Powered by <a href="http://www.pixpo.com/”
413 target="_blank”>PiXPO</p>
414 </div>
415 </body>
416 </html>
Referring to SOURCE CODE 1II, the XML document *° —continued

returned by the request at lines 336 and 337 is listed.

SOURCE CODE III: XML DOCUMENT FOR MEDIA ITEM

417
418
419
420
421
422
423
424
425

427
428
429
430
431

<?xml version="1.0" encoding=“UTF-8"?>
<ItemRecord type="video™>
<ID>5162312b-ab79-491e-ba3d-63410ea4402</ID>
<FileName>e32006_army_wmv_512kbps.wmv</FileName>
<Title>USArmy</Title>
<Description></Description™>

<Tags></Tags>

<VideoDescriptor>

<Width>320</Width>

<Height>240</Height>
<BitRate>573Kbps</BitRate>
<Duration>00:03:33.679</Duration>
<Format>WMV</Format>
<MSVideoTranscodeStatus code="“complete™>
<TranscodeCompleteDescriptor>

SOURCE CODE III: XML DOCUMENT FOR MEDIA ITEM

432 <Width>320</Width>
433 <Height>240</Height>
45 434 <BitRate>294Kbps</BitRate>
435 <Duration>00:03:33.701</Duration>
436 <TranscodeProfile>
ENCODERPROFILE_300KBPS_320PX_FULL</TranscodeProfile>
437 </TranscodeCompleteDescriptor>
438 </MSVideoTranscodeStatus>
50 439 </VideoDescriptor>
440 </TtemRecord>

Referring to SOURCE CODE 1V, the XSLT used to trans-

form the XML to HTML, when invoked at lines 353 and 354,

55 is listed. SOURCE CODE 1V includes multiple transforms.

The transforms for the publisher content are provided in lines

473-475 and 629-643. “UGC” below stands for user gener-

ated content. Lines 502-508 show the insertion of clickable
thumbnail images for playing video content.

SOURCE CODE IV: TRANSFORM FROM XML TO HTML VIA XSLT

441 <?xml version="1.0" encoding="utf-8”?>
442 <xsl:stylesheet xmlns:xsl="“http://www.w3.0rg/1999/XSL/Transform”
443 version="1.0">

US 8,370,732 B2
33

-continued

SOURCE CODE IV: TRANSFORM FROM XML TO HTML VIA XSLT

444 <xsl:output method="htm!”/>

445 <xsl:param name="method”/>

446 <xsl:param name="host”/>

447 <xsl:param name="user”/>

448 <xsl:param name="container”/>

449 <xsl:param name="displayName”/>

450 <xsl:param name="page”/>

451 <xsl:template match="/">

452 <xslif test="$method = ‘videoadd™>

453 <xsl:call-template name="videoadd”/>
454 </xslif>

455 <xslif test="$method = ‘videoedit™>

456 <xsl:call-template name="videoedit”/>
457 </xslLif>

458 <xsliif test="$method = ‘videoerror>
459 <xsl:call-template name="videoerror”/>
460 </xslif>

461 <xslif test="$method = ‘container”>

462 <xsl:call-template name="container”/>
463 </xslif>

464 <xslif test="$method = ‘transcodefailed””>
465 <xsl:call-template name="transcodefailed”/>
466 </xslif>

467 <xslif test="$method = ‘description””>
468 <xsl:call-template name="description”/>
469 </xslif>

470 <xslif test=“$method = ‘result™”>

471 <xsl:call-template name="result”/>

472 </xslLif>

473 <xslif test="$method = ‘uge’>

474 <xsl:call-template name="ugc”/>

475 </xslLif>

476 <xslif test="$method = ‘ugc.search”>
477 <xsl:call-template name="ugc.search”/>
478 </xslLif>

479 <xslif test="$method = ‘ugcPopup >

480 <xsl:call-template name="“ugcPopup”/>
481 </xslLif>

482 </xsl:template>

483 <xsl:template name="videoadd”>

484 <xsl:call-template name="video™>

485 <xsl:with-param name="action” select="*video.add()/>
486 <xsl:with-param name="label” select="Add To Channel/>
487 </xsl:call-template>

488 </xsl:template>

489 <xsl:template name="“videoedit”>

490 <xsl:call-template name="video™>

491 <xsl:with-param name="action” select="*video.update()’/>
492 <xsl:with-param name="label” select="Update Video”/>
493 <xsl:with-param name="remove” select="*Remove From Channel />

494 </xsl:call-template>

495 </xsl:template>

496 <xsl:template name="video”>

497 <xsliparam name=“action”/>

498 <xsliparam name="“label”/>

499 <xsliparam name=“remove”/>

500 <xsl:ichoose>

501 <xsl:when test="ItemRecord/@type = ‘video’”>
502 <div id="thumbnail”>

503 <img

504 sre="{$host}/api/media/{ItemRecord/ID/text()} ?view=image&size=medthumb&
505 amp;cropstyle=43center”/>

506 <a href="#" onclick="Action(‘video.preview()",

507 “{ItemRecord/ID/text()}"); return false;”>Preview

508 </div>

509 <form id="videolnfo™ action="/api/media/{ItemRecord/ID/text()}

510 method="post” onsubmit="Action(*{$action}’, this); return false;”>
511 <div>

512 <div class="element”>

513 <label for="title”>Title: </label><input id="title”

514 type="text” name="title” value="{ItemRecord/Title/text()}’ maxlength="70"/>
515 </div>

516 <div class="element”>

517 <label for="description”>Description: </label><textarea
518 id="description” name="“description”><xsl:value-of select=

519 “ItemRecord/Description/text()’/></textarea>

520 </div>

521 <div class="nav contain’>

US 8,370,732 B2
35 36

-continued

SOURCE CODE IV: TRANSFORM FROM XML TO HTML VIA XSLT

522 <input type=“hidden” name="container”

523 value=“{$container}”/>

524 <input type=“hidden” name="resId”

525 value="{ItemRecord/ID/text()} />

526 <input type="submit” name="update” value="{$label}”/>
527 <xsl:if test="$remove”>

528 <input type=“button” name="“remove” value="{$remove}”
529 onclick="Action(‘video.remove()’, this.form);”/>

530 <fxsl:if>

531 </div>

532 </div>

533 </form>

534 </xsl:when>

535 <xsl:otherwise>

536 <p>Sorry but at this time only video files are supported.</p>

537 </xsl:otherwise>

538 </xsl:choose>

539 </xsl:itemplate>

540 <xsl:template name="videoerror”>

541 <xslif test="ErrorResult/Error/@code = ‘notFound >

542 <p>The file you have selected could not be found by PiXPO on your
543 filesystem.</p>

544 </xslif>

545 <xslif test="ErrorResult/Error/@code = ‘typeNotSupported’>

546 <p>The file you have selected could is of a type not supported by
347 PiXPO.</p>

548 </xslif>

549 <xslif test="ErrorResult/Error/@code = ‘decodeFailure™>

550 <p>The file you have selected could not be decoded by PiXPO.</p>
551 </xslif>

552 <xslif test="ErrorResult/Error/@code = ‘error’”>

553 <p>A fatal error occurred with PiXPO.</p>

554 </xslif>

555 </xsl:itemplate>

556 <xsl:template name="“container”>

557 <xslichoose>

558 <xsl:when test="Ttems/@total = 0>

559 <p>You are currently not broadcasting any videos
560 into this channel. You should <a

561 href="add?container={$container }&displayName={$displayName}*>add</

strong>
562 some videos now.</p>
563 </xsl:when>
564 <xsl:otherwise>
565 <xsl:for-each select="ITtems/ItemRecord”>
566 <div class="item”>
567 <xsl:choose>
568 <xsl:when
569 test="VideoDescriptor/MSVideoTranscodeStatus[@code = ‘error’]”>
570 <a

571 href="transcodefailed?videoGuid={ID/text() }&container={$container } &
572 displayName={$displayName}” title="Remove this failed video file”>

573 <img src="/images/error-thumbnail.gif”

574 class="thumb”/>

575 Remove
576 <xsl:value-of

577 select="Title/text()’/>

578 <>

579 </xsl:when>

580 <xsl:otherwise>

581 <a

582 href="edit?videoGuid={ID/text() } &container={$container }&displayName=
583 {$displayName}” title=“Edit this video™>

584 <img

585 sre="{$host}/api/media/{ID/text() } ?view=image&size=medthumb&cropstyle=
586 43center” class="“thumb”/>

587 Edit
588 <xsl:value-of

589 select="Title/text()’/>

590 <>

591 </xsl:otherwise>

592 </xsl:choose>

593 </div>

594 </xsl:for-each>

595 </xsl:otherwise>

596 </xsl:choose>
597 </xsl:itemplate>
598 <xsl:template name="transcodefailed”>

US 8,370,732 B2
37 38

-continued

SOURCE CODE IV: TRANSFORM FROM XML TO HTML VIA XSLT

599 <div id="thumbnail”>

600 <img

601 sre="{$host}/api/media/{ItemRecord/ID/text()} ?view=image&size=medthumb&
602 amp;cropstyle=43center”/>

603 <a href="#" onclick="Action(‘video.preview(),
604 *{ItemRecord/ID/text()}"); return false;”>Preview
605 </div>

606 <form id="videoInfo” action="/api/media/{ItemRecord/ID/text()}
607 method="post” onsubmit="Action(‘video.remove(), this); return false;”>

608 <div>

609 <h3>Title:</h3>

610 <p><xsl:value-of select="TtemRecord/Title/text()/></p>

611 <h3>Description:</h3>

612 <p id="description”><xsl:value-of

613 select="ItemRecord/Description/text()”/></p>

614 <div class="nav contain’>

615 <input type="hidden” name="container” value="{$container}”/>
616 <input type="“hidden” name="resId”

617 value="{ItemRecord/ID/text() }’/>

618 <input type="“submit” name="remove” value="Remove Broken File”/>
619 </div>

620 </div>

621 </form>

622 </xsl:template>

623 <xsl:template name="description”>

624 <h2><xsl:value-of select="TtemRecord/Title/text()”/></h2>

625 <p><xsl:value-of select="ItemRecord/Description/text()”/></p>

626 </xsl:template>

627 <xsl:template name="result”>

628 </xsl:template>

629 <xsl:itemplate name="ugc”>

630 <a

631 href="player?user={$user } &video={ItemRecord/ID/text() }&container={$
632 container }&page={$page}” title="“Play this video”

633 onclick="window.open(this.href, ‘ugeplayer’,

634 ‘width=630, height=430, scrollbars=yes,resizable=yes,toolbar=no,statusbar=no’);
635 return false;”>

636 <img

637 sre="http://liveweb.pixpo.com/{$user}/api/media/{ItemRecord/ID/text() } ?view=
638 image&size=medthumb&cropstyle=43center” class="“thumb”/>

639 Play

640 <xsl:value-of select="TtemRecord/Title/text()’/>
641

642 <Ja>

643 </xsl:template>

644 <xsl:template name="ugc.search™>

645 <a

646 href="player?user={$user}&video={ItemRecord/ID/text() } &page={$page }”
647 title="Play this video” onclick="window.open(this.href, ‘ugeplayer’,

648 ‘width=345 height=430,scrollbars=yes,resizable=yes,toolbar=no,statusbar=no");

649 return false;”>

650 <img

651 sre="http://liveweb.pixpo.com/{$user}/api/media/{ItemRecord/ID/text() } ?7view=

652 image&size=medthumb&cropstyle=43center” class="“thumb”/>

653 Play

654 <xsl:value-of select="TtemRecord/Title/text()’/>
655

656 <Ja>

657 </xsl:template>

658 <xsl:itemplate name="ugcPopup”>

659 <a href="player?user={$user } &video={ItemRecord/ID/text()}

660 title="Play this video” onclick="Action(*video.updateMovie()’, *{$user}’,

661 *{ItemRecord/ID/text()}"); return false;>

662 <img

663 sre="http://liveweb.pixpo.com/{$user}/api/media/{ItemRecord/ID/text() } view=
664 image&size=medthumb&cropstyle=43center” class="“thumb”/>

665 Play

666 <xsl:value-of select="TtemRecord/Title/text()’/>
667

668 <Ja>

669 </xsl:template>
670 </xsl:stylesheet>

Referring to SOURCE CODE V, the HTML output from noted that the HTML output corresponds to the section of
applying the XSTL transformation in SOURCE CODE IV to 85 code in the XSLT transformation at lines 629-643. The vari-
the XML document in SOURCE CODE III is listed. It is able ID at line 631 is set to the media identifier 51e2312b-

US 8,370,732 B2

39
ab79-491e-ba3d-63410ead402, according to line 419 of XML
document. Parameters such as $user, $container and $page at
lines 447, 448 and 450, respectively, are calling parameters
from lines 353 and 354.

The HTML output is inserted into the portal web page, 5
according to line 352.

40

images being linked to play the one or more of the publisher
media files that are selected by the user.

4. The method of claim 3 further comprising transcoding
the one or more of the publisher media files that are selected
by the user for bit-rate targeted streaming.

SOURCE CODE V: INSERT TRANSFORMED XML AS HTML INTO PAGE

671 <DIV class="item">
672 <A
673
674 0634f0ead4402&container=techclassics&page=0"
675 title="Play this video” onclick="window.open(this.herf, ‘ugeplayer’,

href="player?user=twitchguru2&video=51e2312b-ab79-491e-ba3d-

676 ‘width=630,height=430,scrollbars=yes,resizable=yes,toolbar=no,statusbar=no");

677 return false;”>
678 <IMG
679

sre="http://liveweb.pixpo.com/twitchguru2/api/media/51e2312b-ab79-

680 491 e-ba3d-0634f0ead402?view=image&size=medthumb&cropstyle=43center”

681 class="thumb”/>
682
683 Play

684
685 USArmy
686
687 </DIV>

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-

tions and changes may be made to the specific exemplary 30

embodiments without departing from the broader spirit and
scope of the invention as set forth in the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is: 35

1. A method for peer-to-portal broadcasting, comprising:

receiving, from each of one or more publishers, meta-data
for media files designated by the publisher for broadcast
to web browsers via a portal;

in response to a request from the portal, dynamically gen- 40

erating source code, the source code comprising includ-

ing instructions for causing a web browser:

(1) to request, from a broadcast server, an XML docu-
ment that includes the meta-data for one or more of

the publisher media files that are selected by a user 45

who is using the web browser to browse a web page of
the portal;

(ii) to transform the XML document to an HTML docu-
ment using an XSLT transformation; and

(iii) to insert the resulting HTML document into the web 50

page of the portal; and
transmitting the dynamically generated source code to the
portal for further transmission, within the web page of
the portal, to the web browser,

wherein the web browser is remote from the portal and remote 55

from the one or more publishers, and wherein the broadcast
server is remote from the portal and remote from the one or
more publishers and remote from the web browser.

2. The method of claim 1 further comprising:

storing the received meta-data in a database; and 60

dynamically generating the XML document that includes
the meta-data for the one or more of the publisher media
files that are selected by the user, based on the meta-data
stored in the database.

3. The method of claim 1 wherein the resulting HTML 65

document includes source code for placing clickable thumb-
nail images into the portal web page, the clickable thumbnail

5. The method of claim 1 further comprising providing a
publisher interface for communicating with the one or more
publishers, through which said receiving is facilitated.

6. The method of claim 1 further comprising controlling
transmission of the publisher media files to the web browser.

7. The method of claim 6 wherein said controlling does not
route the publisher media files through the portal when trans-
mitting the publisher media files to the web browser.

8. A system for peer-to-portal broadcasting, comprising:

a portal web server serving a portal web page that includes

source code received from and generated by a broadcast
server, to a web browser, in response to a request
received from the web browser, wherein the source code
comprises instruction that cause the web browser to
transform at least one data-container document for
broadcast media files, into at least one web page that
assembles a plurality of web objects;

a broadcast server, comprising:

a source code generator for generating the source code
that is included in the portal web page, in response to
a request received from said portal web server; and
a document generator for generating the at least one
data-container document for broadcast media files;
aweb client computer, comprising a web browser compris-
ing a dynamic web page generator and assembler, for
requesting the portal web page from said portal web
server and for executing the source code included in the
portal web page; and
a publisher computer comprising a broadcast tool that
enables a publisher to broadcast media files from the
publisher computer to said web client computer via said
broadcast server, in response to said web client computer
executing the source code included in the portal web
page,
wherein said broadcast server is distinct from said portal web
server and communicatively coupled with said portal web
server, wherein said web client computer is distinct from said
portal web server and from said broadcast server, and com-
municatively coupled with said portal web server and with
said broadcast server, and wherein said publisher computer is
distinct from said portal web server, from said broadcast

US 8,370,732 B2

41

server and from said web client computer, and communica-
tively coupled with said broadcast server.

9. The system of claim 8 wherein the plurality of web
objects assembled by the at least one web page include click-
able thumbnail images, the clickable thumbnail images being
linked to play the publisher media files.

10. The system of claim 8 further comprising a proxy
server for proxying streaming of the publisher media files
from the publisher computer to the web client computer.

11. The system of claim 8 wherein said broadcast server
comprises a publisher interface for communicating with said
broadcast tool.

12. The system of claim 8 wherein said broadcast server
controls broadcast of the publisher media files from said
publisher computer to said web client computer.

13. The system of claim 12 wherein said broadcast server
controls broadcast of the publisher media files such that the
transmission of the media files from said publisher computer
to said web client computer does not route the published
media files through said portal web server.

14. A computer-readable non-transitory storage medium
storing program code for causing a broadcast server:

15

20

42

to receive, from each of one or more publishers, meta-data
for media files designated by the publisher for broadcast
to web browsers via a portal;

to dynamically generate source code, in response to a
request from the portal, the source code comprising
instructions for causing a web browser:

(1) to request, from a broadcast server, an XML docu-
ment that includes the meta-data for one or more of
the publisher media files that are selected by a user
who is using the web browser to browse a web page of
the portal;

(ii) to transform the XML document to an HTML docu-
ment using an XSLT transformation; and

(iii) to insert the resulting HTML document into the web
page of the portal; and

to transmit the dynamically generated source code to the
portal for further transmission, within the web page of
the portal, to the web browser,
wherein the web browser is remote from the portal and remote
from the one or more publishers, and wherein the broadcast
server is remote from the portal and remote from the one or
more publishers and remote from the web browser.

#* #* #* #* #*

